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Getting Started

This chapter contains two examples to get you started doing image processing
using MATLAB® and the Image Processing Toolbox. The examples contain
cross-references to other sections in the documentation manual that have
in-depth discussions on the concepts presented in the examples.

What Is the Image Processing
Toolbox? (p. 1-2)

Example 1 — Some Basic Concepts
(p. 1-4)

Example 2 — Advanced Topics
(p. 1-10)

Getting Help (p. 1-23)

Image Credits (p. 1-25)

Introduces the Image Processing
Toolbox and its capabilities

Guides you through an example of
some of the basic image processing
capabilities of the toolbox, including
reading, writing, and displaying
images

Guides you through some advanced
image processing topics, including
components labeling, object property
measurement, image arithmetic,
morphological image processing, and
contrast enhancement

Provides pointers to additional
sources of information

Provides information about the
sources of the images used in the
documentation
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What Is the Image Processing Toolbox?

The Image Processing Toolbox is a collection of functions that extend the
capability of the MATLAB numeric computing environment. The toolbox
supports a wide range of image processing operations, including

e Spatial image transformations

e Morphological operations

e Neighborhood and block operations

¢ Linear filtering and filter design

® Transforms

¢ Image analysis and enhancement

* Image registration

¢ Deblurring

® Region of interest operations

Many of the toolbox functions are MATLAB M-files, a series of MATLAB

statements that implement specialized image processing algorithms. You can
view the MATLAB code for these functions using the statement

type function_name

You can extend the capabilities of the Image Processing Toolbox by writing
your own M-files, or by using the toolbox in combination with other toolboxes,
such as the Signal Processing Toolbox and the Wavelet Toolbox.

For a list of the new features in this version of the Image Processing Toolbox,
see the Release Notes documentation.



What Is the Image Processing Toolbox?

Configuration Notes

To determine if the Image Processing Toolbox is installed on your system, type
this command at the MATLAB prompt.

ver

When you enter this command, MATLAB displays information about the
version of MATLAB you are running, including a list of all toolboxes installed
on your system and their version numbers.

For information about installing the toolbox, see the MATLAB Installation
Guide for your platform.

For the most up-to-date information about system requirements, see the
system requirements page, available in the products area at The MathWorks
Web site (www.mathworks.com).

Related Products

The MathWorks provides several products that are relevant to the kinds of
tasks you can perform with the Image Processing Toolbox and that extend the
capabilities of MATLAB. For information about these related products, see
www.mathworks.com/products/image/related.html

Compilability

The Image Processing Toolbox is compilable with the MATLAB Compiler
except for the following two functions that launch GUIs:

® cpselect

® imtool


http://www.mathworks.com
http://www.mathworks.com/products/image/related.html
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Example 1 — Some Basic Concepts

This example introduces some basic image processing concepts, including
reading and writing images, performing histogram equalization on an image,
and getting information about an image. The example breaks this process
into the following steps:

“Step 1: Read and Display an Image” on page 1-4

e “Step 2: Check How the Image Appears in the Workspace” on page 1-5

e “Step 3: Improve Image Contrast” on page 1-6

e “Step 4: Write the Image to a Disk File” on page 1-8

e “Step 5: Check the Contents of the Newly Written File” on page 1-8
Before beginning with this example, you should already have installed the
Image Processing Toolbox and have started MATLAB. If you are new to

MATLAB, read the MATLAB Getting Started documentation to learn about
basic MATLAB concepts.

Step 1: Read and Display an Image
Clear the MATLAB workspace of any variables and close open figure windows.

close all

To read an image, use the imread command. The example reads one of the
sample images included with the Image Processing Toolbox, pout.tif, and
stores it in an array named I.

I = imread('pout.tif');

imread infers from the file that the graphics file format is Tagged Image File
Format (TIFF). For the list of supported graphics file formats, see the imread
function reference documentation.

Now display the image. The toolbox includes two image display functions:
imshow and imtool. imshow is the toolbox’s fundamental image display
function. imtool starts the Image Tool which presents an integrated
environment for displaying images and performing some common image
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processing tasks. The Image Tool provides all the image display capabilities
of imshow but also provides access to several other tools for navigating and
exploring images, such as scroll bars, the Pixel Region tool, Image Information
tool, and the Contrast Adjustment tool. For more information, see Chapter 4,
“Displaying and Exploring Images”. You can use either function to display an
image. This example uses imshow.

imshow(I)

Grayscale Image pout.tif

Step 2: Check How the Image Appears in the
Workspace

To see how the imread function stores the image data in the workspace, check
the Workspace browser in the MATLAB desktop. The Workspace browser
displays information about all the variables you create during a MATLAB
session. The imread function returned the image data in the variable I, which
is a 291-by-240 element array of uint8 data. MATLAB can store images

as uint8, uint16, or double arrays.

You can also get information about variables in the workspace by calling the
whos command.

whos
Name Size Bytes Class
I 291x240 69840 uint8 array
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Grand total is 69840 elements using 69840 bytes

For more information about image storage classes, see “Converting Between
Image Classes” on page 2-17.

Step 3: Improve Image Contrast

pout.tif is a somewhat low contrast image. To see the distribution of
intensities in pout.tif, you can create a histogram by calling the imhist
function. (Precede the call to imhist with the figure command so that the
histogram does not overwrite the display of the image I in the current figure
window.)

figure, imhist(I)

w00 T T T ]
1400 - E
1200

1000 -

00

a0

400

200

]

0 0 100 150 200 250

Notice how the intensity range is rather narrow. It does not cover the
potential range of [0, 255], and is missing the high and low values that would
result in good contrast.

The toolbox provides several ways to improve the contrast in an image. One
way is to call the histeq function to spread the intensity values over the full
range of the image, a process called histogram equalization.

I2 = histeq(I);
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Display the new equalized image, 12, in a new figure window.

figure, imshow(I2)

Equalized Version of pout.tif

Call imhist again to create a histogram of the equalized image I2. If you
compare the two histograms, the histogram of I2 is more spread out than
the histogram of I1.

figure, imhist(I2)

1800 1

1400 1

400 i

200 i

0 50 100 150 200 250
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The toolbox includes several other functions that perform contrast
adjustment, including the imadjust and adapthisteq functions. See
“Intensity Adjustment” on page 11-34 for more information. In addition, the
toolbox includes an interactive tool, called the Adjust Contrast tool, that you
can use to adjust the contrast and brightness of an image displayed in the
Image Tool. To use this tool, call the imcontrast function or access the tool
from the Image Tool. For more information, see “Adjusting the Contrast and
Brightness of an Image” on page 4-36.

Step 4: Write the Image to a Disk File

To write the newly adjusted image I2 to a disk file, use the imwrite function.
If you include the filename extension '.png', the imwrite function writes
the image to a file in Portable Network Graphics (PNG) format, but you can
specify other formats.

imwrite (I2, 'pout2.png');

See the imwrite function reference page for a list of file formats it supports.
See also “Writing Image Data” on page 3-5 for a tutorial discussion on writing
images using the Image Processing Toolbox.

Step 5: Check the Contents of the Newly Written File

To see what imwrite wrote to the disk file, use the imfinfo function.
imfinfo('pout2.png')

The imfinfo function returns information about the image in the file, such
as its format, size, width, and height. See “Getting Information About a
Graphics File” on page 3-2 for more information about using imfinfo.

ans =

Filename: 'pout2.png’
FileModDate: '29-Dec-2005 09:34:39'
FileSize: 36938
Format: 'png'
FormatVersion: []
Width: 240
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Height:
BitDepth:
ColorType:
FormatSignature:
Colormap:
Histogram:
InterlaceType:
Transparency:
SimpleTransparencyData:
BackgroundColor:
RenderingIntent:
Chromaticities:
Gamma:
XResolution:
YResolution:
ResolutionUnit:
XOffset:
YOffset:
OffsetUnit:
SignificantBits:
ImageModTime:
Title:

Author:
Description:
Copyright:
CreationTime:
Software:
Disclaimer:
Warning:

Source:

Comment:
OtherText:

291

8
‘grayscale’
[137 80 78 71 13 10 26 10]
[]

[]
"'none’
'none’
[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]
'29 Dec 2005 14:34:39 +0000'
[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]
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Example 2 — Advanced Topics

This example introduces some advanced image processing concepts. The
example calculates statistics about objects in the image but, before it performs
these calculations, it preprocesses the image to achieve better results. The
preprocessing involves creating a uniform background in the image and
converting the image into a binary image. The example breaks this process
into the following steps:

e “Step 1: Read and Display an Image” on page 1-11

e “Step 2: Estimate the Value of Background Pixels” on page 1-11

® “Step 3: View the Background Approximation as a Surface” on page 1-12
e “Step 4: Create an Image with a Uniform Background” on page 1-14

e “Step 5: Adjust the Contrast in the Processed Image” on page 1-14

e “Step 6: Create a Binary Version of the Image” on page 1-15

e “Step 7: Determine the Number of Objects in the Image” on page 1-16

e “Step 8: Examine the Label Matrix” on page 1-17

e “Step 9: Display the Label Matrix as a Pseudocolor Indexed Image” on
page 1-18

e “Step 10: Measure Object Properties in the Image” on page 1-19

e “Step 11: Compute Statistical Properties of Objects in the Image” on page
1-21

1-10
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Step 1: Read and Display an Image

Clear the MATLAB workspace of any variables, close open figure windows,
and close all open Image Tools.

Read and display the grayscale image rice.png.

Grayscale Image rice.png

Step 2: Estimate the Value of Background Pixels

In the sample image, the background illumination is brighter in the

center of the image than at the bottom. In this step, the example uses a
morphological opening operation to estimate the background illumination.
Morphological opening is an erosion followed by a dilation, using the same
structuring element for both operations. The opening operation has the effect
of removing objects that cannot completely contain the structuring element.
For more information about morphological image processing, see Chapter 10,
“Morphological Operations”.
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The example calls the imopen function to perform the morphological opening

operation and then calls the imshow function to view the results. Note how the
example calls the strel function to create a disk-shaped structuring element
with a radius of 15. To remove the rice grains from the image, the structuring
element must be sized so that it cannot fit entirely inside a single grain of rice.

Step 3: View the Background Approximation as a
Surface

Use the surf command to create a surface display of the background
approximation background. The surf command creates colored parametric
surfaces that enable you to view mathematical functions over a rectangular
region. The surf function requires data of class double, however, so you first
need to convert background using the double command.

The example uses MATLAB indexing syntax to view only 1 out of 8 pixels in
each direction; otherwise the surface plot would be too dense. The example
also sets the scale of the plot to better match the range of the uint8 data and
reverses the y-axis of the display to provide a better view of the data (the
pixels at the bottom of the image appear at the front of the surface plot).

In the surface display, [0, 0] represents the origin, or upper left corner of the
image. The highest part of the curve indicates that the highest pixel values
of background (and consequently rice.png) occur near the middle rows of
the image. The lowest pixel values occur at the bottom of the image and are
represented in the surface plot by the lowest part of the curve.
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The surface plot is a Handle Graphics® object. You can use object properties to
fine-tune its appearance. For information on working with MATLAB graphics,
see the MATLAB graphics documentation.

250 4.

2000

1-13



1 Getting Started

Step 4: Create an Image with a Uniform Background

To create a more uniform background, subtract the background image,
background, from the original image, I, and then view the image.

Image with Uniform Background

Step 5: Adjust the Contrast in the Processed Image

After subtraction, the image has a uniform background but is now a bit too
dark. Use imadjust to adjust the contrast of the image.imadjust increases
the contrast of the image by saturating 1% of the data at both low and high
intensities of I2 and by stretching the intensity values to fill the uint8
dynamic range. See the reference page for imadjust for more information.

The following example adjusts the contrast in the image created in the
previous step and displays it.

Image After Intensity Adjustment

1-14
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Step 6: Create a Binary Version of the Image

Create a binary version of the image so that you can use toolbox functions
to count the number of rice grains. Use the im2bw function to convert the
grayscale image into a binary image by using thresholding. The function
graythresh automatically computes an appropriate threshold to use to
convert the grayscale image to binary.

Binary Version of the Image

1-15
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The binary image bw returned by im2bw is of class logical, as can be seen
in this call to whos. The Image Processing Toolbox uses logical arrays to
represent binary images. For more information, see “Binary Images” on page
2-8.

whos

MATLAB responds with

Name Size Bytes Class

I 256x256 65536 uint8 array
I2 256x256 65536 uint8 array
I3 256x256 65536 uint8 array
background 256x256 65536 uint8 array
bw 256x256 65536 logical array
level 1x1 8 double array

Grand total is 327681 elements using 327688 bytes

Step 7: Determine the Number of Objects in the
Image

After converting the image to a binary image, you can use the bwlabel
function to determine the number of grains of rice in the image. The bwlabel
function labels all the components in the binary image bw and returns the
number of components it finds in the image in the output value, numObjects.

The accuracy of the results depends on a number of factors, including

¢ The size of the objects

e Whether or not any objects are touching (in which case they might be
labeled as one object)

¢ The accuracy of the approximated background

¢ The connectivity selected. The parameter 4, passed to the bwlabel
function, means that pixels must touch along an edge to be considered
connected. For more information about the connectivity of objects, see
“Pixel Connectivity” on page 10-22.
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Step 8: Examine the Label Matrix

To better understand the label matrix returned by the bwlabel function, this
step explores the pixel values in the image. There are several ways to get a
close-up view of pixel values. For example, you can use imcrop to select a
small portion of the image. Another way is to use toolbox Pixel Region tool to
examine pixel values. The following example displays the label matrix, using
imshow, and then starts a Pixel Region tool associated with the displayed
image.

By default, it automatically associates itself with the image in the current
figure. The Pixel Region tool draws a rectangle, called the pixel region
rectangle, in the center of the visible part of the image. This rectangle defines
which pixels are displayed in the Pixel Region tool. As you move the rectangle,
the Pixel Region tool updates the pixel values displayed in the window. For
more information about using the toolbox modular interactive tools, see
Chapter 5, “Building GUIs with Modular Tools”.
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The following figure shows the Image Viewer with the Pixel Region rectangle
positioned over the edges of two rice grains. Note how all the pixels in the rice
grains have the values assigned by the bwlabel function and the background

pixels have the value 0 (zero).

Pixel Region rectangle

File Edit Wiew Insert Tools Desktop Window Help

DEedE k|aRame @ 0B =3

A8} Region displayed in Pixel Region Tool
k|
il
File Edit Window Help ~
ma?

| 70 | 70 | 70 | 70
.........................
| 70

| 70 | 7o

__________________

____________

__________________

---------------------

Pixel info: (181, 118) 70

Examining the Label Matrix with the Pixel Region Tool

Step 9: Display the Label Matrix as a Pseudocolor

Indexed Image

A good way to view a label matrix is to display it as a pseudocolor indexed

image. In the pseudocolor image, the number that identifies each object in the
label matrix maps to a different color in the associated colormap matrix. The

colors in the image make objects easier to distinguish.
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To view a label matrix in this way, use the label2rgb function. Using this
function, you can specify the colormap, the background color, and how objects
in the label matrix map to colors in the colormap.

\ - 7
;\\ >\ ’/‘
\ '| s

Label Matrix Displayed as Pseudocolor Image

Step 10: Measure Object Properties in the Image

The regionprops command measures object or region properties in an image
and returns them in a structure array. When applied to an image with labeled
components, it creates one structure element for each component.

The following example uses regionprops to create a structure array
containing some basic properties for labeled. When you set the properties
parameter to 'basic', the regionprops function returns three commonly
used measurements: area, centroid (or center of mass), and bounding box.
The bounding box represents the smallest rectangle that can contain a region,
or in this case, a grain of rice.

MATLAB responds with
graindata =
101x1 struct array with fields:
Area

Centroid
BoundingBox
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To find the area of the 51st labeled component, access the Area field in the
51st element in the graindata structure array. Note that structure field
names are case sensitive.

returns the following results
ans =

140

To find the smallest possible bounding box and the centroid (center of mass)
for the same component, use this code:

graindata(51).BoundingBox, graindata(51).Centroid
ans =

107.5000 4.5000 13.0000 20.0000
ans =

114.5000 15.4500
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Step 11: Compute Statistical Properties of Objects
in the Image

Now use MATLAB functions to calculate some statistical properties of the
thresholded objects. First use max to find the size of the largest grain. (In this
example, the largest grain is actually two grains of rice that are touching.)

returns

ans =
404

Use the find command to return the component label of the grain of rice
with this area.

returns
biggrain =
59
Find the mean of all the rice grain sizes.

returns

ans =

175.0396
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Make a histogram containing 20 bins that show the distribution of rice grain
sizes. The histogram shows that the most common sizes for rice grains in this
image are in the range of 150 to 250 pixels.

1= T T T T T T T T

a0 D 40 43
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Getting Help

For more information about the topics covered in these exercises, read

the tutorial chapters that make up the remainder of this documentation.
For reference information about any of the Image Processing Toolbox
functions, see the online Chapter 17, “Functions — Alphabetical List”, which
complements the M-file help that is displayed in the MATLAB command
window when you type

help functionname

For example,

help imtool

Online Help

The Image Processing Toolbox User’s Guide documentation is available online
in both HTML and PDF formats. To access the HTML help, select Help from
the menu bar of the MATLAB desktop. In the Help Navigator pane, click the
Contents tab and expand the Image Processing Toolbox topic in the list.

To access the PDF help, click Image Processing Toolbox in the Contents
tab of the Help browser and go to the link under “Printable Documentation
(PDF).” (Note that to view the PDF help, you must have Adobe’s Acrobat
Reader installed.)

Image Processing Demos

The Image Processing Toolbox is supported by a full complement of demo
applications. These are very useful as templates for your own end-user
applications, or for seeing how to use and combine your toolbox functions for
powerful image analysis and enhancement.

To view all the Image Processing Toolbox demos, call the iptdemos function.
This displays an HTML page in the MATLAB Help browser that lists all
the Image Processing Toolbox demos.

You can also view this page by starting the MATLAB Help browser and

clicking the Demos tab in the Help Navigator pane. From the list of products
with demos, select the Image Processing Toolbox.
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The toolbox demos are located under the subdirectory

matlabroot\toolbox\images\imdemos

where matlabroot represents your MATLAB installation directory.

MATLAB Newsgroup

If you read newsgroups on the Internet, you might be interested in the
MATLAB newsgroup (comp.soft-sys.matlab). This newsgroup gives you
access to an active MATLAB user community. It is an excellent way to seek
advice and to share algorithms, sample code, and M-files with other MATLAB
users.
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Image Credits

This table lists the copyright owners of the images used in the Image
Processing Toolbox documentation.

Image Source

cameraman Copyright Massachusetts Institute of
Technology. Used with permission.

cell Cancer cell from a rat’s prostate, courtesy of
Alan W. Partin, M.D., Ph.D., Johns Hopkins
University School of Medicine.

circuit Micrograph of 16-bit A/D converter circuit,
courtesy of Steve Decker and Shujaat Nadeem,
MIT, 1993.

concordaerial and Visible color aerial photographs courtesy of

westconcordaerial mPower3/Emerge.

concordorthophoto and | Orthoregistered photographs courtesy
westconcordorthophoto | of Massachusetts Executive Office of
Environmental Affairs, MassGIS.

forest Photograph of Carmanah Ancient Forest,
British Columbia, Canada, courtesy of Susan
Cohen.

LAN files Permission to use Landsat data sets provided by
Space Imaging, LL.C, Denver, Colorado.

liftingbody Picture of M2-F1 lifting body in tow, courtesy of
NASA (Image number E-10962).

m83 MS83 spiral galaxy astronomical image courtesy

of Anglo-Australian Observatory, photography
by David Malin.

moon Copyright Michael Myers. Used with
permission.

saturn Voyager 2 image, 1981-08-24, NASA catalog
#PIA01364.

solarspectra Courtesy of Ann Walker. Used with permission.
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Image Source

tissue Courtesy of Alan W. Partin, M.D., PhD., Johns
Hopkins University School of Medicine.

trees Trees with a View, watercolor and ink on paper,
copyright Susan Cohen. Used with permission.
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Introduction

This chapter introduces you to the fundamentals of image processing using
MATLAB and the Image Processing Toolbox.

Images in MATLAB and the Image
Processing Toolbox (p. 2-2)

Image Types in the Toolbox (p. 2-7)

Converting Between Image Types
(p. 2-15)

Converting Between Image Classes
(p. 2-17)

Working with Image Sequences
(p. 2-19)

Image Arithmetic (p. 2-25)

How images are represented in
MATLAB and the Image Processing
Toolbox

Fundamental image types supported
by the Image Processing Toolbox

Converting between the image types

Converting image data from one
class to another

Working with sequences of images

Adding, subtracting, multiplying,
and dividing images
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Images in MATLAB and the Image Processing Toolbox

The basic data structure in MATLAB is the array, an ordered set of real or
complex elements. This object is naturally suited to the representation of
images, real-valued ordered sets of color or intensity data.

MATLAB stores most images as two-dimensional arrays (i.e., matrices), in
which each element of the matrix corresponds to a single pixel in the displayed
image. (Pixel is derived from picture element and usually denotes a single
dot on a computer display.)

For example, an image composed of 200 rows and 300 columns of different
colored dots would be stored in MATLAB as a 200-by-300 matrix. Some
images, such as truecolor images, require a three-dimensional array, where
the first plane in the third dimension represents the red pixel intensities,
the second plane represents the green pixel intensities, and the third plane
represents the blue pixel intensities. This convention makes working with
images in MATLAB similar to working with any other type of matrix data, and
makes the full power of MATLAB available for image processing applications.

Coordinate Systems

Locations in an image can be expressed in various coordinate systems,
depending on context. This section discusses the two main coordinate systems
used in the Image Processing Toolbox and the relationship between them.
These two coordinate systems are described in

¢ “Pixel Coordinates” on page 2-3

e “Spatial Coordinates” on page 2-4
¢ “Using a Nondefault Spatial Coordinate System” on page 2-5
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Pixel Coordinates

Generally, the most convenient method for expressing locations in an image is
to use pixel coordinates. In this coordinate system, the image is treated as

a grid of discrete elements, ordered from top to bottom and left to right, as
illustrated by the following figure.

1 2 3 c
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The Pixel Coordinate System

For pixel coordinates, the first component r (the row) increases downward,
while the second component ¢ (the column) increases to the right. Pixel
coordinates are integer values and range between 1 and the length of the
row or column.

There is a one-to-one correspondence between pixel coordinates and the
coordinates MATLAB uses for matrix subscripting. This correspondence
makes the relationship between an image’s data matrix and the way the
image is displayed easy to understand. For example, the data for the pixel
in the fifth row, second column is stored in the matrix element (5,2). You use
normal MATLAB matrix subscripting to access values of individual pixels.
For example, the MATLAB code

I(2,15)

returns the value of the pixel at row 2, column 15 of the image I.
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Spatial Coordinates

In the pixel coordinate system, a pixel is treated as a discrete unit, uniquely
identified by a single coordinate pair, such as (5,2). From this perspective, a
location such as (5.3,2.2) is not meaningful.

At times, however, it is useful to think of a pixel as a square patch. From this
perspective, a location such as (5.3,2.2) is meaningful, and is distinct from
(5,2). In this spatial coordinate system, locations in an image are positions
on a plane, and they are described in terms of x and y (not r and ¢ as in
the pixel coordinate system).

The following figure illustrates the spatial coordinate system used for images.
Notice that y increases downward.
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The Spatial Coordinate System

This spatial coordinate system corresponds closely to the pixel coordinate
system in many ways. For example, the spatial coordinates of the center point
of any pixel are identical to the pixel coordinates for that pixel.

There are some important differences, however. In pixel coordinates, the
upper left corner of an image is (1,1), while in spatial coordinates, this location
by default is (0.5,0.5). This difference is due to the pixel coordinate system’s
being discrete, while the spatial coordinate system is continuous. Also, the
upper left corner is always (1,1) in pixel coordinates, but you can specify a
nondefault origin for the spatial coordinate system. See “Using a Nondefault
Spatial Coordinate System” on page 2-5 for more information.
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Another potentially confusing difference is largely a matter of convention: the
order of the horizontal and vertical components is reversed in the notation for
these two systems. As mentioned earlier, pixel coordinates are expressed as
(r,c), while spatial coordinates are expressed as (x,y). In the reference pages,
when the syntax for a function uses r and c, it refers to the pixel coordinate
system. When the syntax uses x and vy, it refers to the spatial coordinate
system.

Using a Nondefault Spatial Coordinate System

By default, the spatial coordinates of an image correspond with the pixel
coordinates. For example, the center point of the pixel in row 5, column 3
has spatial coordinates x=3, y=5. (Remember, the order of the coordinates

is reversed.) This correspondence simplifies many of the toolbox functions
considerably. Several functions primarily work with spatial coordinates
rather than pixel coordinates, but as long as you are using the default spatial
coordinate system, you can specify locations in pixel coordinates.

In some situations, however, you might want to use a nondefault spatial
coordinate system. For example, you could specify that the upper left corner
of an image is the point (19.0,7.5), rather than (0.5,0.5). If you call a function
that returns coordinates for this image, the coordinates returned will be
values in this nondefault spatial coordinate system.

To establish a nondefault spatial coordinate system, you can specify the XData
and YData image properties when you display the image. These properties
are two-element vectors that control the range of coordinates spanned by the
image. By default, for an image A, XData is [1 size(A,2)], and YData is

[1 size(A,1)].

For example, if A is a 100 row by 200 column image, the default XData is

[1 200], and the default YDatais [1 100]. The values in these vectors are
actually the coordinates for the center points of the first and last pixels (not
the pixel edges), so the actual coordinate range spanned is slightly larger;
for instance, if XData is [1 200], the x-axis range spanned by the image is
[0.5 200.5].
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These commands display an image using nondefault XData and YData.

A = magic(5);
x = [19.5 23.5];
y = [8.0 12.0];

image (A, 'XData',x, 'YData',y), axis image, colormap(jet(25))

TS

[
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For information about the syntax variations that specify nondefault spatial
coordinates, see the reference page for imshow.
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Image Types in the Toolbox

The Image Processing Toolbox defines four basic types of images, summarized
in the following table. These image types determine the way MATLAB
interprets data matrix elements as pixel intensity values. The sections that
follow provide more information about each image type. See also “Converting
Between Image Types” on page 2-15.

Image Type

Interpretation

Binary
(Also known as a
bilevel image)

Logical array containing only Os and 1s, interpreted
as black and white, respectively.

Indexed
(Also known as a
pseudocolor image)

Array of class logical, uint8, uint16, single, or

double whose pixel values are direct indices into a
colormap. The colormap is an m-by-3 array of class
double.

For single or double arrays, integer values range
from [1, p]. For logical, uint8, or uint16 arrays,
values range from [0, p-1].

Grayscale
(Also known as an
intensity image)

Array of class uint8, uint16, int16, single, or
double whose pixel values specify intensity values.

For single or double arrays, values range from

[0, 1]. For uint8, values range from [0,255]. For
uint16, values range from [0, 65535]. For int16,
values range from [-32768, 32767].

Truecolor
(Also known as an
RGB image )

m-by-n-by-3 array of class uint8, uint16, single, or
double whose pixel values specify intensity values.

For single or double arrays, values range from [0,
1]. For uint8, values range from [0, 255]. For uint16,
values range from [0, 65535].
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Binary Images

In a binary image, each pixel assumes one of only two discrete values: 1
or 0. A binary image is stored as a 1logical array. By convention, this
documentation uses the variable name BW to refer to binary images.

The following figure shows a binary image with a close-up view of some of
the pixel values.
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Pixel Values in a Binary Image

Indexed Images

An indexed image consists of an array and a colormap matrix. The pixel
values in the array are direct indices into a colormap. By convention, this
documentation uses the variable name X to refer to the array and map to refer
to the colormap.

The colormap matrix is an m-by-3 array of class double containing
floating-point values in the range [0,1]. Each row of map specifies the red,
green, and blue components of a single color. An indexed image uses direct
mapping of pixel values to colormap values. The color of each image pixel is
determined by using the corresponding value of X as an index into map.
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A colormap is often stored with an indexed image and is automatically loaded
with the image when you use the imread function. After you read the image
and the colormap into the MATLAB workspace as separate variables, you
must keep track of the association between the image and colormap. However,
you are not limited to using the default colormap--you can use any colormap
that you choose.

The relationship between the values in the image matrix and the colormap
depends on the class of the image matrix. If the image matrix is of class
single or double, it normally contains integer values 1 through p, where p is
the length of the colormap. the value 1 points to the first row in the colormap,
the value 2 points to the second row, and so on. If the image matrix is of class
logical, uint8 or uint16, the value 0 points to the first row in the colormap,
the value 1 points to the second row, and so on.

The following figure illustrates the structure of an indexed image. In the
figure, the image matrix is of class double, so the value 5 points to the fifth
row of the colormap.
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Grayscale Images

A grayscale image (also spelled gray-scale) is a data matrix whose values
represent intensities within some range. MATLAB stores a grayscale image
as a individual matrix, with each element of the matrix corresponding to one
image pixel. By convention, this documentation uses the variable name I

to refer to grayscale images.

The matrix can be of class uint8, uint16, int16, single, or double.While
grayscale images are rarely saved with a colormap, MATLAB uses a colormap
to display them.

For a matrix of class single or double, using the default grayscale colormap,
the intensity 0 represents black and the intensity 1 represents white. For a
matrix of type uint8, uint16, or int16, the intensity intmin(class(I))
represents black and the intensity intmax (class(I)) represents white.

The figure below depicts a grayscale image of class double.

g 0.2563 0.2826 0.2826 T3
U.5342 0.2051 0.2157 0.2826 0.3822 0.4351 0.438
0.5342 0.1785 0.1307 0.1789 0.2051 0.3256 0.2483
0,4308 0.2483 0.2624 0.3344 0.3344 0.2624 0.2548
d344 0.2624 0.3344 0,334 13—

Pixel Values in a Grayscale Image Define Gray Levels
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Truecolor Images

A truecolor image is an image in which each pixel is specified by three values
— one each for the red, blue, and green components of the pixel’s color.
MATLAB store truecolor images as an m-by-n-by-3 data array that defines
red, green, and blue color components for each individual pixel. Truecolor
images do not use a colormap. The color of each pixel is determined by the
combination of the red, green, and blue intensities stored in each color plane
at the pixel’s location.

Graphics file formats store truecolor images as 24-bit images, where the red,
green, and blue components are 8 bits each. This yields a potential of 16
million colors. The precision with which a real-life image can be replicated
has led to the commonly used term truecolor image.

A truecolor array can be of class uint8, uint16, single, or double. In a
truecolor array of class single or double, each color component is a value
between 0 and 1. A pixel whose color components are (0,0,0) is displayed

as black, and a pixel whose color components are (1,1,1) is displayed as
white. The three color components for each pixel are stored along the third
dimension of the data array. For example, the red, green, and blue color
components of the pixel (10,5) are stored in RGB(10,5,1), RGB(10,5,2), and
RGB(10,5,3), respectively.

2-11
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The following figure depicts a truecolor image of class double.
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oo o o
oo oo o

The Color Planes of a Truecolor Image

To determine the color of the pixel at (2,3), you would look at the RGB triplet
stored in (2,3,1:3). Suppose (2,3,1) contains the value 0.5176, (2,3,2) contains
0.1608, and (2,3,3) contains 0.0627. The color for the pixel at (2,3) is

0.5176 0.1608 0.0627
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To further illustrate the concept of the three separate color planes used in a
truecolor image, the code sample below creates a simple image containing
uninterrupted areas of red, green, and blue, and then creates one image for
each of its separate color planes (red, green, and blue). The example displays
each color plane image separately, and also displays the original image.

RGB=reshape(ones(64,1)*reshape(jet(64),1,192),[64,64,3]);

R=RGB(:,:,1);
G=RGB(:,:,2);
B=RGB(:,:,3);
imshow(R)

figure, imshow(G)
figure, imshow(B)
figure, imshow(RGB)

Red Pla-s Cres- Flane

3um Plena Cricinal Imege

The Separated Color Planes of an RGB Image
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Notice that each separated color plane in the figure contains an area of white.
The white corresponds to the highest values (purest shades) of each separate
color. For example, in the Red Plane image, the white represents the highest
concentration of pure red values. As red becomes mixed with green or blue,
gray pixels appear. The black region in the image shows pixel values that
contain no red values, i.e., R ==



Converting Between Image Types

Converting Between Image Types

You might need to convert an image from one type to another. For example, if
you want to filter a color image that is stored as an indexed image, you must
first convert it to truecolor format. When you apply the filter to the truecolor
image, MATLAB filters the intensity values in the image, as is appropriate. If
you attempt to filter the indexed image, MATLAB simply applies the filter

to the indices in the indexed image matrix, and the results might not be
meaningful.

Note When you convert an image from one format to another, the resulting
image might look different from the original. For example, if you convert a
color indexed image to a grayscale image, the resulting image is grayscale,
not color.

The following table lists all the image type conversion functions in the Image
Processing Toolbox.

Function Description

dither Use dithering to convert a grayscale image to a binary
image or to convert a truecolor image to an indexed image

gray2ind Convert a grayscale image to an indexed image

grayslice Convert a grayscale image to an indexed image by using
multilevel thresholding

im2bw Convert a grayscale image, indexed image, or truecolor
image, to a binary image, based on a luminance threshold

ind2gray Convert an indexed image to a grayscale image

ind2rgb Convert an indexed image to a truecolor image

mat2gray Convert a data matrix to a grayscale image, by scaling
the data

rgb2gray Convert a truecolor image to a grayscale image

rgb2ind Convert a truecolor image to an indexed image
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You can perform certain conversions just using MATLAB syntax. For example,
you can convert a grayscale image to truecolor format by concatenating three
copies of the original matrix along the third dimension.

RGB = cat(3,I,I,I);

The resulting truecolor image has identical matrices for the red, green, and
blue planes, so the image displays as shades of gray.

In addition to these standard conversion functions, there are other functions
that return a different image type as part of the operation they perform. For
example, the region-of-interest functions return a binary image that you can
use to mask an image for filtering or for other operations.

Color Space Conversions

The Image Processing Toolbox represents colors as RGB values in both
truecolor and indexed images. However, there are other methods for
representing colors. For example, a color can be represented by its hue,
saturation, and value components (HSV). Different methods for representing
colors are called color spaces.

The toolbox provides functions to convert between color spaces. The image
processing functions themselves assume all color data is RGB, but you can
process an image that uses a different color space by first converting it to
RGB, and then converting the processed image back to the original color
space. For more information about color space conversion routines, see
Chapter 14, “Color”.
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Converting Between Image Classes

You can convert uint8 and uint16 image data to double using the MATLAB
double function. However, converting between classes changes the way
MATLAB and the toolbox interpret the image data. If you want the resulting
array to be interpreted properly as image data, you need to rescale or offset
the data when you convert it.

For easier conversion of classes, use one of these toolbox functions:
im2uint8, im2uint16, im2int16, im2single, or im2double. These functions
automatically handle the rescaling and offsetting of the original data of any
image class. For example, this command converts a double-precision RGB
image with data in the range [0,1] to a uint8 RGB image with data in the
range [0,255].

RGB2 = im2uint8(RGB1);

Losing Information in Conversions

When you convert to a class that uses fewer bits to represent numbers, you
generally lose some of the information in your image. For example, a uint16
grayscale image is capable of storing up to 65,536 distinct shades of gray, but
a uint8 grayscale image can store only 256 distinct shades of gray. When
you convert a uint16 grayscale image to a uint8 grayscale image, im2uint8
quantizes the gray shades in the original image. In other words, all values
from O to 127 in the original image become 0 in the uint8 image, values from
128 to 385 all become 1, and so on.

Converting Indexed Images

It is not always possible to convert an indexed image from one storage class
to another. In an indexed image, the image matrix contains only indices into
a colormap, rather than the color data itself, so no quantization of the color
data is possible during the conversion.
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For example, a uint16 or double indexed image with 300 colors cannot be
converted to uint8, because uint8 arrays have only 256 distinct values. If
you want to perform this conversion, you must first reduce the number of the
colors in the image using the imapprox function. This function performs the
quantization on the colors in the colormap, to reduce the number of distinct
colors in the image. See “Reducing Colors in an Indexed Image” on page 14-11
for more information.
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Working with Image Sequences

Some applications work with collections of images related by time, such as
frames in a movie, or by view (spatial location), such as magnetic resonance
imaging (MRI) slices. These collections of images are referred to by a variety
of names, such as image sequences or image stacks.

The ability to create N-dimensional arrays can provide a convenient way to
store image sequences. For example, an m-by-n-by-p array can store an array
of p two-dimensional images, such as grayscale or binary images, as shown in
the following figure. An m-by-n-by-3-by-p array can store truecolor images
where each image is made up of three planes.

| - |maoge p
|mage Imoge 2

Imoge 1

Multidimensional Array Containing an Image Sequence

Many toolbox functions can operate on multi-dimensional arrays and,
consequently, can operate on image sequences. For example, if you pass a
multi-dimensional array to the imtransform function, it applies the same 2-D
transformation to all 2-D planes along the higher dimension.

Some toolbox functions that accept multi-dimensional arrays, however, do
not by default interpret an m-by-n-by-p or an m-by-n-by-3-by-p array as an
image sequence. To use these functions with image sequences, you must use
particular syntax and be aware of other limitations. The following table lists
these toolbox functions and provides guidelines about how to use them to
process image sequences. To see an example of using one of these functions
with an image sequence, see “Example: Processing Image Sequences” on
page 2-22.

(Two toolbox functions, immovie and montage, work with 4-D arrays called

multi-frame image arrays. See “Multi-Frame Image Arrays” on page 2-23
for more information.)
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Image Sequence

Guideline When Used with an

Function Dimensions Image Sequence
bwlabeln m-by-n-by-p only Must use the bwlabeln(BW,conn)
syntax with a 2-D connectivity.
deconvblind m-by-n-by-p or PSF argument can be either 1-D
m-by-n-by-3-by-p or 2-D.
deconvlucy m-by-n-by-p or PSF argument can be either 1-D
m-by-n-by-3-by-p or 2-D.
edgetaper m-by-n-by-p or PSF argument can be either 1-D
m-by-n-by-3-by-p or 2-D.
entropyfilt m-by-n-by-p only nhood argument must be 2-D.
imabsdiff m-by-n-by-p or Image sequences must be the same
m-by-n-by-3-by-p size.
imadd m-by-n-by-p or Image sequences must be the same
m-by-n-by-3-by-p size. Cannot add scalar to image
sequence.
imbothat m-by-n-by-p only SE argument must be 2-D.
imclose m-by-n-by-p only SE argument must be 2-D.
imdilate m-by-n-by-p only SE argument must be 2-D.
imdivide m-by-n-by-p or Image sequences must be the same
m-by-n-by-3-by-p size.
imerode m-by-n-by-p only SE argument must be 2-D.
imextendedmax | m-by-n-by-p only Must use the
imextendedmax(I,h,conn)
syntax with a 2-D connectivity.
imextendedmin | m-by-n-by-p only Must use the
imextendedmin(I,h,conn)
syntax with a 2-D connectivity.
imfilter m-by-n-by-p or With grayscale images, h can be

m-by-n-by-3-by-p

2-D. With truecolor images (RGB),
h can be 2-D or 3-D.
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Image Sequence

Guideline When Used with an

Function Dimensions Image Sequence
imhmax m-by-n-by-p only Must use the imhmax(I,h,conn)
syntax with a 2-D connectivity.
imhmin m-by-n-by-p only Must use the imhmin(I,h,conn)
syntax with a 2-D connectivity.
imlincomb m-by-n-by-p or Image sequences must be the same
m-by-n-by-3-by-p size.
immultiply m-by-n-by-p or Image sequences must be the same
m-by-n-by-3-by-p size.
imopen m-by-n-by-p only SE argument must be 2-D.
imregionalmax | m-by-n-by-p only Must use the
imextendedmax(I,conn)
syntax with a 2-D connectivity.
imregionalmin | m-by-n-by-p only Must use the
imextendedmin(I,conn)
syntax with a 2-D connectivity.
imtransform m-by-n-by-p or TFORM argument must be 2-D.
m-by-n-by-3-by-p
imsubtract m-by-n-by-p or Image sequences must be the same
m-by-n-by-3-by-p size.
imtophat m-by-n-by-p only SE argument must be 2-D.
padarray m-by-n-by-p or PADSIZE argument must be a
m-by-n-by-3-by-p two-element vector.
rangefilt m-by-n-by-p only NHOOD argument must be 2-D.
stdfilt m-by-n-by-p only NHOOD argument must be 2-D.
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Image Sequence | Guideline When Used with an
Function Dimensions Image Sequence

tformarray m-by-n-by-p or T must be 2-D to 2-D (compatible
m-by-n-by-3-by-p with imtransform).

R must be 2-D.

TDIMS_A and TDIMS_B

must be 2-D, i.e., [2 1] or

[1 2]

TSIZE_B must be a two-element
array [D1 D2], where D1 and D2
are the first and second transform
dimensions of the output space.
TMAP_B must be [TSIZE_B 2]

F can be a scalar or a p-by-1
array for m-by-n-by-p arrays, or
it can be a scalar, 1-by-p array,
3-by-1 array, or 3-by-p array, for
m-by-n-by-3-by-p arrays.

watershed m-by-n-by-p only Must use watershed(I,conn)
syntax with a 2-D connectivity.

Example: Processing Image Sequences

This example starts by reading a series of images from a directory into
the MATLAB workspace, storing the images in an m-by-n-by-p array. The
example then passes the entire array to the stdfilt function and performs
standard deviation filtering on each image in the sequence. Note that, to
use stdfilt with an image sequence, you must use the nhood argument,
specifying a 2-D neighborhood.

% Create an array of filenames that make up the image sequence
fileFolder = fullfile(matlabroot, 'toolbox','images', 'imdemos');
dirOutput = dir(fullfile(fileFolder,'AT3_1m4_*.tif'));
fileNames = {dirQutput.name}';

numFrames = numel(fileNames);

I = imread(fileNames{1});

% Preallocate the array
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sequence = zeros([size(I) numFrames],class(I));
sequence(:,:,1) = I;

% Create image sequence array
for p = 2:numFrames

sequence(:,:,p) = imread(fileNames{p});
end

% Process sequence
sequenceNew = stdfilt(sequence,ones(3));

% View results

figure;

for k = 1:numFrames
imshow(sequence(:,:,k));
title(sprintf('Original Image # %d',k));
pause(1);
imshow(sequenceNew(:,:,k),[1);
title(sprintf('Processed Image # %d',k));
pause(1);

end

Multi-Frame Image Arrays

The toolbox includes two functions, immovie and montage, that work with a
specific type of multi-dimensional array called a multi-frame array. In this
array, images, called frames in this context, are concatenated along the fourth
dimension. Multi-frame arrays are either m-by-n-by-1-by-p, for grayscale,
binary, or indexed images, or m-by-n-by-3-by-p, for truecolor images, where

p is the number of frames.

For example, a multi-frame array containing five, 480-by-640 grayscale or
indexed images would be 480-by-640-by-1-by-5. An array with five 480-by-640
truecolor images would be 480-by-640-by-3-by-5.

Note To process a multi-frame array of grayscale images as an image
sequence, as described in “Working with Image Sequences” on page 2-19, you
can use the squeeze function to remove the singleton dimension.
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You can use the cat command to create a multi-frame array. For example, the
following stores a group of images (A1, A2, A3, A4, and A5) in a single array.

A = cat(4,A1,A2,A3,A4,A5)

You can also extract frames from a multiframe image. For example, if you
have a multiframe image MULTI, this command extracts the third frame.

FRM3 = MULTI(:,:,:,3)

Note that, in a multiframe image array, each image must be the same size
and have the same number of planes. In a multiframe indexed image, each
image must also use the same colormap.
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Image Arithmetic

Image arithmetic is the implementation of standard arithmetic operations,
such as addition, subtraction, multiplication, and division, on images. Image
arithmetic has many uses in image processing both as a preliminary step in
more complex operations and by itself. For example, image subtraction can
be used to detect differences between two or more images of the same scene
or object.

You can do image arithmetic using the MATLAB arithmetic operators. The
Image Processing Toolbox also includes a set of functions that implement
arithmetic operations for all numeric, nonsparse data types. The toolbox
arithmetic functions accept any numeric data type, including uint8, uint16,
and double, and return the result image in the same format. The functions
perform the operations in double precision, on an element-by-element basis,
but do not convert images to double-precision values in the MATLAB
workspace. Overflow is handled automatically. The functions saturate return
values to fit the data type. For details, see “Image Arithmetic Saturation
Rules” on page 2-25.

Note On Intel architecture processors, the image arithmetic functions can
take advantage of the Intel Performance Primitives Library (IPPL), thus
accelerating their execution time. IPPL is only activated, however, when the
data passed to these functions is of specific classes. See the reference pages
for the individual arithmetic functions for more information.

Image Arithmetic Saturation Rules

The results of integer arithmetic can easily overflow the data type allotted
for storage. For example, the maximum value you can store in uint8 data is
255. Arithmetic operations can also result in fractional values, which cannot
be represented using integer arrays.

MATLAB arithmetic operators and the Image Processing Toolbox arithmetic
functions use these rules for integer arithmetic:

¢ Values that exceed the range of the integer type are saturated to that range.

® Fractional values are rounded.
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For example, if the data type is uint8, results greater than 255 (including
Inf) are set to 255. The following table lists some additional examples.

Result Class Truncated Value
300 uint8 255

-45 uint8 0

10.5 uint8 11

Nesting Calls to Image Arithmetic Functions

You can use the image arithmetic functions in combination to perform a series
of operations. For example, to calculate the average of two images,

_A+E
C= 2

You could enter

I = imread('rice.png');
I2 = imread('cameraman.tif');
K = imdivide(imadd(I,I2), 2); % not recommended

When used with uint8 or uint16 data, each arithmetic function rounds

and saturates its result before passing it on to the next operation. This can
significantly reduce the precision of the calculation. A better way to perform
this calculation is to use the imlincomb function. imlincomb performs all the
arithmetic operations in the linear combination in double precision and only
rounds and saturates the final result.

K = imlincomb(.5,I,.5,I2); % recommended
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Reading and Writing Image
Data

This chapter describes how to get information about the contents of a graphics
file, read image data from a file, and write image data to a file, using standard

graphics and medical file formats.

Getting Information About a
Graphics File (p. 3-2)

Reading Image Data (p. 3-3)

Writing Image Data (p. 3-5)

Converting Graphics File Formats
(p. 3-8)

Reading and Writing Data in
Medical File Formats (p. 3-9)

Describes how to get information
about the contents of a graphics file
by reading the metadata contained
in the file

Describes how to read image data
from a file

Describes how to write image data
to a file

Describes how to change the file
format used to store an image

Describes how to import image data
into the MATLAB workspace and
write image data to graphics files
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Getting Information About a Graphics File

The imfinfo function enables you to obtain information about a graphics file
and its contents. You can use imfinfo with any of the formats supported

by MATLAB. Use the imformats function to determine which formats are
supported.

Note You can also get information interactively about an image displayed in
the Image Tool — see “Getting Information About an Image” on page 4-34.

The information returned by imfinfo depends on the file format, but it always
includes at least the following:

Name of the file

File format

Version number of the file format

File modification date

File size in bytes

Image width in pixels

Image height in pixels

Number of bits per pixel

Image type: truecolor (RGB), grayscale (intensity), or indexed

See imfinfo for more information about getting information about graphics
files. For information about adding support for a new file format, see
imformats.
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Reading Image Data

The imread function reads an image from any supported graphics image file
format, in any of the supported bit depths. Most image file formats use 8 bits
to store pixel values. When these are read into memory, MATLAB stores them
as class uint8. For file formats that support 16-bit data, PNG and TIFF,
MATLAB stores the images as class uint16.

For example, this code reads a truecolor image into the MATLAB workspace
as the variable RGB.

RGB = imread('football.jpg');

This code reads an indexed image with its associated colormap into the
MATLAB workspace in two separate variables.

[X,map] = imread('trees.tif');

Note For indexed images, imread always reads the colormap into a matrix
of class double, even though the image array itself may be of class uint8 or
uint16.

In these examples, imread infers the file format to use from the contents of the
file. You can also specify the file format as an argument to imread. MATLAB
supports many common graphics file formats, such as Microsoft Windows
Bitmap (BMP), Graphics Interchange Format (GIF), Joint Photographic
Experts Group (JPEG), Portable Network Graphics (PNG), and Tagged
Image File Format (TIFF) formats. For the latest information concerning

the bit depths and/or image formats supported, see the reference pages for
the imread and imformats functions.
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Reading Multiple Images from a Graphics File

MATLAB supports several graphics file formats, such as HDF and TIFF,
that can contain multiple images. By default, imread imports only the first
image from a file. To import additional images from the file, use the syntax
supported by the file format.

For example, when used with TIFF files, you can use an index value with
imread that identifies the image in the file you want to import. This example
reads a series of 27 images from a TIFF file and stores the images in a
four-dimensional array. You can use imfinfo to determine how many images
are stored in the file.

mri = uint8(zeros(128,128,1,27)); % preallocate 4-D array

for frame=1:27
[mri(:,:,:,frame),map] = imread('mri.tif',frame);
end

When a file contains multiple images that are related in some way, such as
a time sequence, you can store the images in MATLAB as a 4-D array. All
the images must be the same size. For more information, see “Working with
Image Sequences” on page 2-19.
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Writing Image Data

The imwrite function writes an image to a graphics file in one of the
supported formats. The most basic syntax for imwrite takes the image
variable name and a filename. If you include an extension in the filename,
MATLAB infers the desired file format from it. (For more information, see the
reference page for the imwrite function.)

This example loads the indexed image X from a MAT-file, clown.mat, that
contains the data matrix and the associated colormap and then writes the
image to a BMP file.

load clown

whos
Name Size Bytes Class
X 200x320 512000 double array
caption 2x1 4 char array
map 81x3 1944 double array

Grand total is 64245 elements using 513948 bytes

imwrite (X, map, 'clown.bmp')

Specifying Additional Format-Specific Parameters

When using imwrite with some graphics formats, you can specify additional
parameters. For example, with PNG files, you can specify the bit depth as an
additional parameter. This example writes a grayscale image I to a 4-bit
PNG file.

imwrite(I, 'clown.png', 'BitDepth',4);

This example writes an image A to a JPEG file, using an additional parameter
to specify the compression quality parameter.

imwrite (A, 'myfile.jpg', 'Quality', 100);

For more information about the additional parameters associated with certain
graphics formats, see the reference pages for imwrite.
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Reading and Writing Binary Images in 1-Bit Format

In certain file formats, a binary image can be stored in a 1-bit format. If
the file format supports it, MATLAB writes binary images as 1-bit images
by default. When you read in a binary image in 1-bit format, MATLAB
represents it in the workspace as a logical array.

This example reads in a binary image and writes it as a TIFF file. Because the
TIFF format supports 1-bit images, the file is written to disk in 1-bit format.

BW = imread('text.png');
imwrite (BW, 'test.tif');

To verify the bit depth of test.tif, call imfinfo and check the BitDepth field.
info = imfinfo('test.tif');

info.BitDepth
ans =

Note When writing binary files, MATLAB sets the ColorType field to
‘grayscale’.
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Determining the Storage Class of the Output File

imwrite uses the following rules to determine the storage class used in the

output image.

Storage Class
of Image

Storage Class of Output Image File

logical

If the output image file format specified supports 1-bit
images, imwrite creates a 1-bit image file.

If the output image file format specified does not
support 1-bit images, imwrite converts the image to a
class uint8 grayscale image.

uint8

If the output image file format specified supports
unsigned 8-bit images, imwrite creates an unsigned
8-bit image file.

uinti6

If the output image file format specified supports
unsigned 16-bit images (PNG or TIFF), imwrite creates
an unsigned 16-bit image file.

If the output image file format specified does not
support 16-bit images, imwrite scales the image data to
class uint8 and creates an 8-bit image file.

int16

Partially supported; depends on file format.

single

Partially supported; depends on file format.

double

MATLAB scales the image data to uint8 and creates an
8-bit image file, because most image file formats use
8 bits.
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Converting Graphics File Formats

To change the graphics format of an image, use imread to import the image
into the MATLAB workspace and then use the imwrite function to export the
image, specifying the appropriate file format.

To illustrate, this example uses the imread function to read an image in
bitmap (BMP) format into the workspace. The example then writes the
bitmap image to a file using Portable Network Graphics (PNG) format.

bitmap = imread('mybitmap.bmp', 'bmp"');
imwrite(bitmap, 'mybitmap.png', 'png');

For the specifics of which bit depths are supported for the different graphics
formats, and for how to specify the format type when writing an image to file,
see the reference pages for imread and imwrite.
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Reading and Writing Data in Medical File Formats

The Image Processing Toolbox includes support for working with image data
in the following commonly used medical file formats:

¢ Digital Imaging and Communications in Medicine (DICOM) format

e Mayo Clinic Analyze 7.5 format

¢ Interfile format
Topics covered in this section include

¢ “Reading Metadata from a DICOM File” on page 3-9
¢ “Reading Image Data from a DICOM File” on page 3-10

¢ “Writing Image Data or Metadata to a DICOM File” on page 3-11, including
an example that reads image data and metadata from a DICOM file,
modifies the image data, and writes the modified data to a new DICOM file

e “Using the Mayo Analyze 7.5 Format” on page 3-16
¢ “Using the Interfile Format” on page 3-17

Reading Metadata from a DICOM File

DICOM files contain metadata that provide information about the image
data, such as the size, dimensions, bit depth, modality used to create the data,
the equipment settings used to capture the image, and information about the
study. The DICOM specification defines many of these metadata fields, but
files can contain additional fields, called private metadata.

To read metadata from a DICOM file, use the dicominfo function. dicominfo
returns the information in a MATLAB structure where every field contains

a specific piece of DICOM metadata. You can use the metadata structure
returned by dicominfo to specify the DICOM file you want to read using
dicomread — see “Reading Image Data from a DICOM File” on page 3-10.

3-9



3 Reading and Writing Image Data

3-10

The following example reads the metadata from a sample DICOM file that

is included with the toolbox.

info = dicominfo('CT-MONO2-16-ankle.dcm')
info =
Filename: [1x47 char]
FileModDate: '24-Dec-2000 19:54:47'
FileSize: 525436
Format: 'DICOM'
FormatVersion: 3
Width: 512
Height: 512
BitDepth: 16
ColorType: 'grayscale'
SelectedFrames: []
FileStruct: [1x1 struct]
StartOfPixelData: 1140
MetaElementGroupLength: 192
FileMetaInformationVersion: [2x1 double]
MediaStorageSOPClassUID: '1.2.840.10008.5.1.4.1.1.7'
MediaStorageSOPInstanceUID: [1x50 char]

TransferSyntaxUID:
ImplementationClassUID:

'1.2.840.10008.1.2"
'1.2.840.113619.6.5"

Reading Image Data from a DICOM File

To read image data from a DICOM file, use the dicomread function. The
dicomread function reads files that comply with the DICOM specification but
can also read certain common noncomplying files.

When using dicomread, you can specify the filename as an argument, as
in the following example. The example reads the sample DICOM file that

is included with the toolbox.

I = dicomread('CT-MONO2-16-ankle.dcm');
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You can also use the metadata structure returned by dicominfo to specify the
file you want to read, as in the following example.

info = dicominfo('CT-MONO2-16-ankle.dcm');
I = dicomread(info);

Viewing Images from DICOM Files

To view the image data imported from a DICOM file, use one of the toolbox
image display functions imshow or imtool. Note, however, that because
the image data in this DICOM file is signed 16-bit data, you must use the
autoscaling syntax with either display function to make the image viewable.

imshow(I, 'DisplayRange’',[])

Writing Image Data or Metadata to a DICOM File

To write image data or metadata to a file in DICOM format, use the
dicomwrite function. This example writes the image I to the DICOM file
ankle.dcm.

dicomwrite(I, 'h:\matlab\work\ankle.dcm')
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Writing Metadata with the Image Data
When writing image data to a DICOM file, dicomwrite automatically
includes the minimum set of metadata fields required by the type of DICOM

information object (IOD) you are creating. dicomwrite supports the following
DICOM IODs with full validation.

¢ Secondary capture (default)
® Magnetic resonance

¢ Computed tomography

dicomwrite can write many other types of DICOM data (e.g. X-ray,
radiotherapy, nuclear medicine) to a file; however, dicomwrite does not
perform any validation of this data. See dicomwrite for more information.

You can also specify the metadata you want to write to the file by passing to
dicomwrite an existing DICOM metadata structure that you retrieved using
dicominfo. In the following example, the dicomwrite function writes the
relevant information in the metadata structure info to the new DICOM file.

info = dicominfo('CT-MONO2-16-ankle.dcm');
I = dicomread(info);
dicomwrite(I, 'h:\matlab\tmp\ankle.dcm',info)

Note that the metadata written to the file is not identical to the metadata in
the info structure. When writing metadata to a file, there are certain fields
that dicomwrite must update. To illustrate, look at the instance ID in the
original metadata with the ID in the new file.

info.SOPInstanceUID
ans =

1.2.840.113619.2.1.2411.1031152382.365.1.736169244
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Now, read the metadata from the newly created DICOM file, using dicominfo,
and check the SOPInstanceUID field. Note that they contain different values.

info2 = dicominfo('h:\matlab\tmp\ankle.dcm');
info2.SOPInstanceUID
ans =

1.2.841.113411.2.1.2411.10311244477.365.1.63874544

Removing Confidential Information from a DICOM File

When using a DICOM file as part of a training set, blinded study, or a
presentation, you might want to remove confidential patient information, a
process called anonymizing the file. To do this, use the dicomanon function.

The dicomanon function creates a new series with new study values, changes
some of the metadata, and then writes the file. For example, you could replace
steps 4, 5, and 6 in the example in “Example: Creating a New Series” on page
3-13 with a call to the dicomanon function.

Example: Creating a New Series

When writing a modified image to a DICOM file, you might want to make the
modified image the start of a new series. In the DICOM standard, images
can be organized into series. When you write an image with metadata to a
DICOM file, dicomwrite puts the image in the same series by default. To
create a new series, you must assign a new DICOM unique identifier to the
SeriesInstanceUID metadata field. The following example illustrates this
process.

1 Read an image from a DICOM file into the MATLAB workspace.

I = dicomread('CT-MONO2-16-ankle.dcm');

To view the image, use either of the toolbox display functions imshow or
imtool. Because the DICOM image data is signed 16-bit data, you must
use the autoscaling syntax.

imtool(I, 'DisplayRange’,[])
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2 Read the metadata from the same DICOM file.

info = dicominfo('CT-MONO2-16-ankle.dcm');

To identify the series an image belongs to, view the value of the
SeriesInstanceUID field.

info.SeriesInstanceUID
ans =

1.2.840.113619.2.1.2411.1031152382.365.736169244

3 You typically only start a new DICOM series when you modify the image in
some way. This example removes all the text from the image.

The example finds the maximum and minimum values of all pixels in
the image. The pixels that form the white text characters are set to the
maximum pixel value.

max(I(:))
ans =

4080
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min(I(:))
ans =
32

To remove these text characters, the example sets all pixels with the
maximum value to the minimum value.

Imodified = I;
Imodified(Imodified == 4080) = 32;

View the processed image.

imshow(Imodified)

4 Generate a new DICOM unique identifier (UID) using the dicomuid
function. You need a new UID to write the modified image as a new series.

uid dicomuid

uid
1.3.6.1.4.1.9590.100.1.1.56461980611264497732341403390561061497

dicomuid is guaranteed to generate a unique UID.
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5 Set the value of the SeriesInstanceUID field in the metadata associated
with the original DICOM file to the generated value.

info.SeriesInstanceUID = uid;

6 Write the modified image to a new DICOM file, specifying the modified
metadata structure, info, as an argument. Because you set the
SeriesInstanceUID value, the image you write is part of a new series.

dicomwrite(Imodified, 'ankle_newseries.dcm',info);

To verify this operation, view the image and the SeriesInstanceUID
metadata field in the new file.

For information about the syntax variations that specify nondefault spatial
coordinates, see the reference page for imshow.

Using the Mayo Analyze 7.5 Format

Analyze 7.5 is a file format, developed by the Mayo Clinic, for storing MRI
data. An Analyze 7.5 data set consists of two files:

e Header file (filename.hdr) — Provides information about dimensions,
identification, and processing history. You use the analyze75info function
to read the header information.

® Image file (filename.img) — Image data, whose data type and ordering
are described by the header file. You use analyze75read to read the image
data into the MATLAB workspace.

Note The Analyze 7.5 format uses the same dual-file data set organization
and the same filename extensions as the Interfile format; however, the file
formats are not interchangeable. To learn how to read data from an Interfile
data set, see “Using the Interfile Format” on page 3-17.

The following example calls the analyze75info function to read the metadata
from the Analyze 7.5 header file. The example then passes the info structure
returned by analyze75info to the analyze75read function to read the image
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data from the image file. The file used in the example can be downloaded from
http://www.radiology.uiowa.edu/downloads/.

info = analyze75info('CT_HAND.hdr');
X = analyze75read(info);

Using the Interfile Format

Interfile is a file format that was developed for the exchange of nuclear
medicine image data.

An Interfile data set consists of two files:

e Header file (filename.hdr) — Provides information about dimensions,
identification and processing history. You use the interfileinfo function
to read the header information.

® Image file (filename.img) — Image data, whose data type and ordering
are described by the header file. You use interfileread to read the image
data into the MATLAB workspace.

Note The Interfile format uses the same dual-file data set organization and
the same filename extensions as the Analyze 7.5 format; however, the file
formats are not interchangeable. To learn how to read data from an Analyze
7.5 data set, see “Using the Mayo Analyze 7.5 Format” on page 3-16.

The following example calls the interfileinfo function to read the metadata
from the Interfile header file. The example then reads the image data from
the corresponding image file in the Interfile data set. The file used in the
example can be downloaded from http://www.keston.com/Phantoms/.

info = interfileinfo('dyna');
X = interfileread('dyna');
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Displaying and Exploring
Images

This chapter describes the image display and exploration tools provided by

the Image Processing Toolbox.

Overview (p. 4-3)

Using imshow to Display Images
(p. 4-5)

Using the Image Tool to Explore
Images (p. 4-9)

Using Image Tool Navigation Aids
(p. 4-18)

Getting Information about the Pixels
in an Image (p. 4-24)

Measuring Features in an Image
(p. 4-31)

Getting Information About an Image
(p. 4-34)

Adjusting the Contrast and
Brightness of an Image (p. 4-36)

Viewing Multiple Images (p. 4-47)

Comparison of toolbox display
functions

How to use the imshow display
function

How to use the Image Tool integrated
display and exploration environment

Image Tool navigation aids including
the Overview tool, panning, and
zooming

Image Tool pixel information tools,
including the Pixel Region tool and
the Pixel Information tool

Image Tool includes the Distance
tool to measure regions in an image

Image Tool’s Image Information tool

Image Tool’s Adjust Contrast tool

Using imshow and imtool to view
multiple images
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Displaying Different Image Types
(p. 4-51)

Special Display Techniques (p. 4-58)

Printing Images (p. 4-64)

Setting Toolbox Display Preferences
(p. 4-66)

Using imshow and imtool with each
image type

Using the colorbar, montage, and
warp functions

Print images from imshow and the
Image Tool

Setting toolbox preferences



Overview

Overview

The Image Processing Toolbox includes two display functions, imshow and
imtool. Both functions work within the Handle Graphics architecture: they
create an image object and display it in an axes object contained in a figure
object. The toolbox functions automatically set the values of certain figure,
axes, and image object properties to control how the image data is displayed —
see “Understanding Handle Graphics Object Property Settings” on page 4-4.

imshow is the toolbox’s fundamental image display function. Use imshow when
you want to display any of the different image types supported by the toolbox,
such as grayscale (intensity), truecolor (RGB), binary, and indexed. For more
information, see “Using imshow to Display Images” on page 4-5. The imshow
function is also a key building block for image applications you might want to
create using the toolbox modular tools. For more information, see Chapter 5,
“Building GUIs with Modular Tools”.

The other toolbox display function, imtool, launches the Image Tool, which
presents an integrated environment for displaying images and performing
some common image processing tasks. The Image Tool provides all the image
display capabilities of imshow but also provides access to several other tools
for navigating and exploring images, such as scroll bars, the Pixel Region
tool, the Image Information tool, and the Adjust Contrast tool. For more
information, see “Using the Image Tool to Explore Images” on page 4-9.

In general, using the toolbox functions to display images is preferable to
using the MATLAB image display functions image and imagesc. The toolbox
functions are easier to use and are optimized for displaying images.
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Understanding Handle Graphics Object Property

Settings

When you display an image, imshow and imtool set the Handle Graphics
properties that control how the image is displayed. The following table lists
the relevant properties and their settings for each image type. The table uses
standard toolbox terminology to refer to the various image types: X represents
an indexed image, I represents a grayscale image, BW represents a binary
image, and RGB represents a truecolor image.

Note Both imshow and imtool can perform automatic scaling of image

data. When called with the syntax imshow(I, 'DisplayRange',[]), and
similarly for imtool, the functions set the axes CLim property to [min(I(:))
max(I(:))]. CDataMapping is always scaled for grayscale images, so that
the value min(I(:)) is displayed using the first colormap color, and the value
max(I(:)) is displayed using the last colormap color.

Handle
Graphics
Property

Indexed
Images

Grayscale
Images

Binary Images

Truecolor
Images

CData (Image)

Set to the data in
X

Set to the data in
I

Set to data in BW

Set to data in RGB

CDataMapping Set to 'direct’ Set to 'scaled’ Set to 'direct’ Ignored when
(Image) CDatais 3-D
CLim (Axes) Does not apply double: [0 1] |Setto [0 1] Ignored when
uint8: [0 255] CData is 3-D
uinti6: [0
65535]
Colormap Set to data in map | Set to grayscale | Set to a grayscale | Ignored when
(Figure) colormap colormap whose | CData is 3-D

values range
from black to
white
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Using imshow to Display Images

You can use the imshow function to display an image that has already been
imported into the MATLAB workspace or to display an image stored in a
graphics file. For example, this code reads an image into the MATLAB
workspace and then displays it in a MATLAB figure window.

moon = imread('moon.tif');
imshow(moon) ;

The imshow function displays the image in a MATLAB figure window, as
shown in the following figure.

-ioix
-

File Edit Wiew Insert Tools Deskfop Window Help
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Image Displayed in a Figure Window by imshow
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The imshow filename syntax

imshow( 'moon.tif');

can be useful for scanning through images. Note, however, that when you
use this syntax, the image data is not stored in the MATLAB workspace. If
you want to bring the image into the workspace, you must use the getimage
function, which retrieves the image data from the current Handle Graphics
image object. For example,

moon = getimage;

assigns the image data from moon.tif to the variable moon if the figure
window in which it is displayed is currently active.

For more information about using imshow, see these additional topics.

® “Specifying the Initial Image Magnification” on page 4-6
® “Controlling the Appearance of the Figure” on page 4-7

For more information about using imshow to display the various image types
supported by the toolbox, see “Displaying Different Image Types” on page 4-51.

Specifying the Initial Image Magnification

By default, imshow attempts to display an image in its entirety at 100%
magnification (one screen pixel for each image pixel). However, if an image
is too large to fit in a figure window on the screen at 100% magnification,
imshow scales the image to fit onto the screen and issues a warning message.

To override the default initial magnification behavior for a particular call to
imshow, specify the InitialMagnification parameter. For example, to view
an image at 150% magnification, use this code.

pout = imread('pout.tif');
imshow(pout, 'InitialMagnification', 150)

imshow attempts to honor the magnification you specify. However, if the
image does not fit on the screen at the specified magnification, imshow scales
the image to fit and issues a warning message. You can also specify the text
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string 'fit' as the initial magnification value. In this case, imshow scales the
image to fit the current size of the figure window.

You can also change the default initial magnification behavior of imshow
by setting the ImshowInitialMagnification toolbox preference. To make
this preference persist between sessions, include the command to set the
preference in your startup.m file. To learn more about toolbox preferences,
see “Setting the Values of Toolbox Preferences” on page 4-68.

When imshow scales an image, it uses interpolation to determine the values
for screen pixels that do not directly correspond to elements in the image
matrix. For more information, see “Interpolation” on page 6-3.

Controlling the Appearance of the Figure

By default, when imshow displays an image in a figure, it surrounds the
image with a gray border and does not include a visible axes box. If you want
to display an image without the gray border or include a visible axes box
with tick labels, you must set toolbox preferences. (For more information
about setting toolbox preferences, see “Setting Toolbox Display Preferences”
on page 4-66.)

For example, to display an image without a border, set the ImshowBorder
preference to 'tight'. By default, this preference is set to 'loose', which
causes the border to be included. This code sets the preference to suppress the
border and then displays an image.

iptsetpref('ImshowBorder', 'tight')
imshow( 'moon.tif")

4-7
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The following figure shows the same image displayed with and without the
border. Note that the image is the same size but the figure window takes
up less space on your screen.

R
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Using the Image Tool to Explore Images

The Image Tool is an image display tool that also provides access to several
other related tools, such as the Pixel Region tool, the Image Information tool,
and the Adjust Contrast tool. The Image Tool also provides navigation aids
that can help explore large images, such as scroll bars, the Overview tool, pan
tool, and zoom buttons. The Image Tool presents an integrated environment
for displaying images and performing common image processing tasks.

For example, this code reads the image from the file moon.tif and then
displays it in the Image Tool.

imtool('moon.tif');

The following figure shows the image displayed in the Image Tool, with all of
the related tools active. For more information about using the Image Tool and
related tools, see the topics in the following list.

® “Opening the Image Tool” on page 4-11

e “Specifying the Initial Image Magnification” on page 4-12

e “Closing the Image Tool” on page 4-17

® “Specifying the Colormap” on page 4-13

¢ “Importing Image Data from the Workspace” on page 4-15

¢ “Exporting Image Data to the Workspace” on page 4-16

¢ “Closing the Image Tool” on page 4-17

¢ “Printing the Image in the Image Tool” on page 4-17

¢ “Using Image Tool Navigation Aids” on page 4-18

® “Getting Information about the Pixels in an Image” on page 4-24.

e “Measuring Features in an Image” on page 4-31

® “Getting Information About an Image” on page 4-34

® “Adjusting the Contrast and Brightness of an Image” on page 4-36

¢ “Displaying Different Image Types” on page 4-51
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Opening the Image Tool

To start the Image Tool, use the imtool function. You can also start another
Image Tool from within an existing Image Tool by using the New option
from the File menu.

The imtool function supports many syntax options. For example, when called
without any arguments, it opens an empty Image Tool.

imtool

To bring image data into this empty Image Tool, you can use either the Open
or Import from Workspace options from the File menu — see “Importing
Image Data from the Workspace” on page 4-15.

You can also specify the name of the MATLAB workspace variable that
contains image data when you call imtool, as follows:

moon = imread('moon.tif');
imtool(moon)

Alternatively, you can specify the name of the graphics file containing the
image. This syntax can be useful for scanning through graphics files.

imtool('moon.tif');

Note When you use this syntax, the image data is not stored in a MATLAB
workspace variable. To bring the image displayed in the Image Tool into
the workspace, you must use the getimage function or the Export from
Workspace option from the Image Tool File menu — see “Exporting Image
Data to the Workspace” on page 4-16.

For more information about these syntax, see the imtool function reference
page.
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Specifying the Initial Image Magnification

Like imshow, the imtool function attempts to display an image in its entirety
at 100% magnification (one screen pixel for each image pixel). Unlike imshow,
imtool always honors the specified numeric magnification, showing only a
portion of the image if it is too big to fit in a figure on the screen and adding
scroll bars to allow navigation to parts of the image that are not currently
visible. If the specified magnification would make the image too large to fit on
the screen, imtool scales the image to fit, without issuing a warning. This

is the default behavior, specified by the imtool 'InitialMagnification’
parameter value 'adaptive'.

To override this default initial magnification behavior for a particular call to
imtool, specify the InitialMagnification parameter. For example, to view
an image at 150% magnification, use this code.

pout = imread('pout.tif');
imtool(pout, 'InitialMagnification', 150)

You can also specify the text string 'fit' as the initial magnification value.
In this case, imtool scales the image to fit the default size of a figure window.

You can also change the default initial magnification behavior of imtool

by setting the ImtoolInitialMagnification toolbox preference. The
magnification value you specify affects every call to imtool for the current
MATLAB session. To make this preference persist between sessions, include
the command to set the preference in your startup.m file. To learn more
about toolbox preferences, see “Setting the Values of Toolbox Preferences”
on page 4-68.

When imtool scales an image, it uses interpolation to determine the values
for screen pixels that do not directly correspond to elements in the image
matrix. For more information, see “Interpolation” on page 6-3.
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Specifying the Colormap

A colormap is a matrix that can have any number of rows, but must have three
columns. Each row in the colormap is interpreted as a color, with the first
element specifying the intensity of red, the second green, and the third blue.

To specify the color map used to display an indexed image or a grayscale
image in the Image Tool, select the Choose Colormap option on the Tools
menu. This activates the Choose Colormap tool, shown below. Using this tool
you can select one of the MATLAB colormaps or select a colormap variable
from the MATLAB workspace.

When you select a colormap, the Image Tool executes the colormap function
you specify and updates the image displayed. You can edit the colormap
command in the Evaluate Colormap text box; for example, you can change
the number of entries in the colormap (default is 256). You can enter your own
colormap function in this field. Press Enter to execute the command.

When you choose a colormap, the image updates to use the new map. If you

click OK, the Image Tool applies the colormap and closes the Choose Colormap
tool. If you click Cancel, the image reverts to the previous colormap.
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Importing Image Data from the Workspace

To import image data from the MATLAB workspace into the Image Tool, use
the Import from Workspace option on the Image Tool File menu. In the
dialog box, shown below, you select the workspace variable that you want to

import into the workspace.

The following figure shows the Import from Workspace dialog box. You can
use the Filter menu to limit the images included in the list to certain image
types, i.e., binary, indexed, intensity (grayscale), or truecolor.

Import From Workspace
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Import from Workspace Dialog Box
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Exporting Image Data to the Workspace

To export the image displayed in the Image Tool to the MATLAB workspace,
you can use the Export to Workspace option on the Image Tool File menu.
In the dialog box, shown below, you specify the name you want to assign to the
variable in the workspace. By default, the Image Tool prefills the variable
name field with BW, for binary images, RGB, for truecolor images, and I for
grayscale or indexed images.

If the Image Tool contains an indexed image, this dialog box also contain a
field where you can specify the name of the associated colormap.

Spedfy nume of —

the 'ui'[]l’|-ES|JIJI:B Image variahle name:

vorighle, ———RGE
oo |

Export Image to Workspace Dialog Box

Using the getimage Function to Export Image Data

You can also use the getimage function to bring image data from the Image
Tool into the MATLAB workspace.

The getimage function retrieves the image data (CData) from the current
Handle Graphics image object. Because, by default, the Image Tool does not
make handles to objects visible, you must use the toolbox function imgca to
get a handle to the image axes displayed in the Image Tool. For example,

moon = getimage(imgca);

assigns the image data from moon.tif to the variable moon if the figure
window in which it is displayed is currently active.
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Closing the Image Tool

To close the Image Tool window, use the Close button in the window title bar
or select the Close option from the Image Tool File menu. You can also use
the imtool function to return a handle to the Image Tool and use the handle
to close the Image Tool. When you close the Image Tool, any related tools that
are currently open also close.

Because the Image Tool does not make the handles to its figure objects
visible, the Image Tool does not close when you call the MATLAB close all
command. If you want to close multiple Image Tools, use the syntax

imtool close all

or select Close all from the Image Tool File menu.

Printing the Image in the Image Tool

To print the image displayed in the Image Tool, select the Print to Figure
option from the File menu. The Image Tool opens another figure window and
displays the image. Use the Print option on the File menu of this figure
window to print the image. See “Printing Images” on page 4-64 for more
information.
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Using Image Tool Navigation Aids

If an image is large or viewed at a large magnification, the Image Tool
displays only a portion of the entire image. When this occurs, the Image Tool
includes scroll bars to allow navigation around the image. In some cases,
scroll bars might not be sufficient. To help navigate large images, the Image
Tool includes the following navigation aids:

® QOverview tool — Provides a view of the entire image to help you understand
which portion of the image is currently displayed in the Image Tool. See
“Overview Navigation” on page 4-18 for more information.

¢ Pan tool — Lets you click and grab the image displayed and move it in the
Image Tool. See “Panning the Image Displayed in the Image Tool” on page
4-21 for more information.

® Zoom tools — Lets you zoom in or out on the image. See “Zooming In and
Out on an Image” on page 4-22 for more information.

e Magnification Box — Lets you specify the exact magnification of the image.
See “Specifying the Magnification of the Image” on page 4-22 for more
information.

Overview Navigation

To get an overview of the image displayed in the Image Tool, use the Overview
tool. The Overview tool displays a view of the entire image, scaled to fit, in a
separate window. Superimposed over this view of the image is a rectangle,
called the detail rectangle. The detail rectangle shows which part of the image
is currently visible in the Image Tool window. You can change the portion of
the image visible in the Image Tool by moving the detail rectangle over the
image in the Overview tool.

The following figure shows the Image Tool with the Overview tool.
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Image Tool with Overview Tool

The following sections provide more information about using the Overview
tool.

e “Starting the Overview Tool” on page 4-19

® “Using the Overview Tool” on page 4-20

* “Specifying the Color of the Detail Rectangle” on page 4-20

® “Getting the Position and Size of the Detail Rectangle” on page 4-20

* “Printing the View of the Image in the Overview Tool” on page 4-21

Starting the Overview Tool

The Overview tool starts automatically when you start the Image Tool. For
example, execute the following command.

imtool( 'moon.tif"')
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You can also start the Overview tool by clicking the Overview button L in
the Image Tool toolbar or by selecting the Overview option from the Tools
menu in the Image Tool.

Using the Overview Tool

To use the Overview tool to explore an image displayed in the Image Tool,
follow this procedure:

1 Start the Overview tool by clicking the Overview button L3 in the Image
Tool toolbar or by selecting Overview from the Tools menu. The Overview
tool opens in a separate window containing a view of the entire image,
scaled to fit.

The Image Tool opens the Overview tool, by default. If the Overview tool is
already active, clicking the Overview button brings the tool to the front of
the windows open on your screen.

2 Using the mouse, move the cursor into the detail rectangle. The cursor

changes to the fleur shape, **.

3 Press and hold the mouse button to drag the detail rectangle anywhere on
the image. The Image Tool updates the view of the image to make the
specified region visible.

Specifying the Color of the Detail Rectangle

By default, the color of the detail rectangle in the Overview tool is blue. You
might want to change the color of the rectangle to achieve better contrast
with the predominant color of the underlying image. To do this, right-click
anywhere inside the boundary of the detail rectangle and select a color from
the Set Rectangle Color option on the context menu.

Getting the Position and Size of the Detail Rectangle

To get the current position and size of the detail rectangle, right-click
anywhere inside it and select Copy Position from the context menu. You can
also access this option from the Edit menu of the Overview tool.

This option copies the position information to the clipboard. The position
information is a vector of the form [xmin ymin width height]. To paste
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this position vector into the MATLAB workspace or another application,
right-click and select Paste from the context menu.

Printing the View of the Image in the Overview Tool

You can print the view of the image displayed in the Overview tool. Select
the Print to Figure option from the Overview tool File menu. See “Printing
Images” on page 4-64 for more information.

Panning the Image Displayed in the Image Tool

To change the portion of the image displayed in the Image Tool, you can
use the Pan tool to move the image displayed in the window. This is called
panning the image.

To pan an image displayed in the Image Tool,

1 Click the Pan tool button |ﬂ| in the toolbar or select Pan from the Tools
menu. When the Pan tool is active, a checkmark appears next to the Pan
selection in the menu.

2 Move the cursor over the image in the Image Tool, using the mouse. The
cursor changes to an open-hand shape 7.

3 Press and hold the mouse button and drag the image in the Image Tool.
When you drag the image, the cursor changes to the closed-hand shape /.

4 To turn off panning, click the Pan tool button again or click the Pan option
in the Tools menu.

Note As you pan the image in the Image Tool, the Overview tool updates the
position of the detail rectangle — see “Overview Navigation” on page 4-18.
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Zooming In and Out on an Image

To enlarge an image to get a closer look or shrink an image to see the whole
image in context, use the Zoom buttons on the toolbar. (You can also zoom
in or out on an image by changing the magnification — see “Specifying the
Magnification of the Image” on page 4-22.)

To zoom in or zoom out on an image,

1 Click the appropriate magnifying glass button in the Image Tool toolbar
or select the Zoom In or Zoom Out option in the Tools menu. When the
Zoom tool is active, a checkmark appears next to the appropriate Zoom
selection in the menu.

Zoom in Zoom out
& | a|

2 Move the cursor over the image you want to zoom in or out on, using the
mouse. The cursor changes to the appropriate magnifying glass icon.
With each click, the Image Tool changes the magnification of the image,
centering the new view of the image on the spot where you clicked.

When you zoom in or out on an image, the magnification value displayed
in the magnification edit box changes and the Overview window updates
the position of the detail rectangle.

3 To leave zoom mode, click the active zoom button again to deselect it or
click the Zoom option in the Tools menu.

Specifying the Magnification of the Image

To enlarge an image to get a closer look or to shrink an image to see the
whole image in context, you can use the magnification edit box, shown in the
following figure. (You can also use the Zoom buttons to enlarge or shrink
an image. See “Zooming In and Out on an Image” on page 4-22 for more
information.)
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Image Tool Magnification Edit Box and Menu

To change the magnification of an image,

1 Move the cursor into the magnification edit box. The cursor changes to
the text entry cursor.

2 Type a new value in the magnification edit box and press Enter. The
Image Tool changes the magnification of the image and displays the new
view in the window.

You can also specify a magnification by clicking the menu associated with
the magnification edit box and selecting from a list of preset magnifications.
If you choose the Fit to Window option, the Image Tool scales the image
so that the entire image is visible.
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Getting Information about the Pixels in an Image

Often, you need to get information about the pixels in an image, such as
their location and value. The Image Tool provides several ways to get this
information, including:

¢ Pixel Information tool — Displays the location and value of the pixel under
the cursor in the Image Tool window. See “Determining the Value of
Individual Pixels” on page 4-24 for more information.

* Display Range tool — Displays the display range of the image in the Image
Tool window. See “Getting the Display Range of an Image” on page 4-26
for more information.

¢ Pixel Region tool — Displays an extreme close-up view of the pixels in
a specific region of an image. See “Viewing Pixel Values with the Pixel
Region Tool” on page 4-27 for more information.

Determining the Value of Individual Pixels

The Image Tool provides information about the location and value of
individual pixels in an image. This information is displayed in the Pixel
Information tool at the bottom left corner of the Image Tool window. The
pixel value and location information represent the pixel under the current
location of the cursor. The Image Tool updates this information as you move
the cursor over the image.

For example, view an image in the Image Tool.

imtool( 'moon.tif")
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The following figure shows the Image Tool with pixel location and value
displayed in the Pixel Information tool. For more information, see “Saving the
Pixel Value and Location Information” on page 4-25.
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Pixel Information in Image Tool

Saving the Pixel Value and Location Information

To save the pixel location and value information displayed, right-click a pixel
in the image and choose the Copy pixel info option. The Image Tool copies
the x- and y-coordinates and the pixel value to the clipboard.

To paste this position vector into the MATLAB workspace or another
application, right-click and select Paste from the context menu.
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Getting the Display Range of an Image

The Image Tool provides information about the display range of pixels in a
grayscale image. The display range is the value of the axes CLim property,
which controls the mapping of image CData to the figure colormap. CLim is

a two-element vector [cmin cmax] specifying the CData value to map to the
first color in the colormap (cmin) and the CData value to map to the last color
in the colormap (cmax). Data values in between are linearly scaled.

The Image Tool displays this information in the Display Range tool at the
bottom right corner of the window. The Image Tool does not show the display

range for indexed, truecolor, or binary images.

For example, view an image in the Image Tool.

imtool( 'moon.tif"')

The following figure shows the Image Tool displaying the image with display
range information.
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Viewing Pixel Values with the Pixel Region Tool

To view the values of pixels in a specific region of an image displayed in the
Image Tool, use the Pixel Region tool. The Pixel Region tool superimposes a
rectangle, called the pixel region rectangle, over the image displayed in the
Image Tool. This rectangle defines the group of pixels that are displayed, in
extreme close-up view, in the Pixel Region tool window. The following figure
shows the Image Tool with the Pixel Region tool.
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Image Tool with Pixel Region Tool and Pixel Region Rectangle

The following sections provide more information about using the Pixel Region
tool.

¢ “Starting the Pixel Region Tool” on page 4-28
® “Selecting a Region” on page 4-28
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e “Customizing the View” on page 4-29
® “Determining the Location of the Pixel Region Rectangle” on page 4-29
¢ “Printing the View of the Image in the Pixel Region Tool” on page 4-30

Starting the Pixel Region Tool

To start the Pixel Region tool, click the Pixel Region button in the Image
Tool toolbar or by selecting the Pixel Region option from the Tools menu in
the Image Tool.

Selecting a Region
To examine pixels in specific regions of an image, use the Pixel Region
rectangle, as follows:

1 Start the Pixel Region tool by clicking the Pixel Region button in the
Image Tool toolbar or by selecting the Pixel Region option from the Tools

menu. The Image Tool displays the pixel region rectangle T in the center
of the target image and opens the Pixel Region tool.

Note Scrolling the image can move the pixel region rectangle off the part
of the image that is currently displayed. To bring the pixel region rectangle
back to the center of the part of the image that is currently visible, click
the Pixel Region button again. For help finding the Pixel Region tool in
large images, see “Determining the Location of the Pixel Region Rectangle”
on page 4-29.

2 Using the mouse, position the pointer over the pixel region rectangle. The
pointer changes to the fleur shape, <.

3 Click the left mouse button and drag the pixel region rectangle to any part
of the image. As you move the pixel region rectangle over the image, the
Pixel Region tool updates the pixel values displayed. You can also move
the pixel region rectangle by moving the scroll bars in the Pixel Region
tool window.
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Customizing the View

The pixel region rectangle defines the group of pixels that are displayed in the
Pixel Region tool. To view a larger region, grab any side of the Pixel Region
tool figure window and resize it, or use the zoom tools in the Pixel Region
toolbar to zoom in or out on the image.

The Pixel Region tool displays the pixels at high magnification, overlaying
each pixel with its numeric value. For RGB images, this information includes
three numeric values, one for each band of the image. For indexed images,
this information includes the index value and the associated RGB value.

If you would rather not see the numeric values in the display, go to the Pixel
Region tool Edit menu and clear the Superimpose Pixel Values option.
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Pixel Region Tool Edit Menu

Determining the Location of the Pixel Region Rectangle

To determine the current location of the pixel region in the target image, you
can use the pixel information given at the bottom of the tool. This information
includes the x- and y-coordinates of pixels in the target image coordinate
system. When you move the pixel region rectangle over the target image, the
pixel information given at the bottom of the tool is not updated until you move
the cursor back over the Pixel Region tool.
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You can also retrieve the current position of the pixel region rectangle by
selecting the Copy Position option from the Pixel Region tool Edit menu.
This option copies the position information to the clipboard. The position

information is a vector of the form [xmin ymin width height].

To paste this position vector into the MATLAB workspace or another
application, right-click and select Paste from the context menu.

The following figure shows these components of the Pixel Region tool.
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Pixel Region Rectangle Location Information

Printing the View of the Image in the Pixel Region Tool

You can print the view of the image displayed in the Pixel Region tool. Select

the Print to Figure option from the Pixel Region tool File menu. See
“Printing Images” on page 4-64 for more information.
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Measuring Features in an Image

This section describes how to use the Distance tool to calculate the Euclidean
distance between two points in an image displayed in the Image Tool. Topics
covered include:

¢ “Using the Distance Tool” on page 4-31

¢ “Exporting Endpoint and Distance Data” on page 4-32

® “Customizing the Appearance of the Distance Tool” on page 4-33

Using the Distance Tool
To use the Distance tool, follow this procedure.

1 Display an image in the Image Tool.

imtool('moon.tif")

2 Click the Distance tool button < in the Image Tool toolbar or select
Distance Tool from the Tools menu. The Distance tool appears as a
horizontal line displayed over the image, as shown in the following figure.

The Distance tool displays the distance between the two endpoints of the
line in a label superimposed over the line. The tools specifies the distance
in data units determined by the XData and YData properties, which is
pixels, by default.
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3 Using the mouse, you can move the Distance tool over the image or, by
grabbing either one of its endpoints, resize the tool.

Exporting Endpoint and Distance Data

To save the endpoint locations and distance information, right-click the
Distance tool and choose the Copy pixel info option from the context menu.

The Distance tool opens the Export to Workspace dialog box. You can use this
dialog box to specify the names of the variables used to store this information.

-loix
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OK | Cancel I
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After you click OK, the Distance tool creates the variables in the workspace,
as in the following example.

whos

Name Size Bytes
distance 1x1 8
moon 537x358 192246
point1 1x2 16
point2 1x2 16

Class

double array
uint8 array
double array
double array

Customizing the Appearance of the Distance Tool

Using the Distance tool context menu, you can customize many aspects of the
Distance tool appearance and behavior, including:

Deleting the distance tool object using the Delete option.

Right-click the Distance tool to access this context menu.

Toggling the distance tool label on and off using the Show Distance Label
option.

Changing the color used to display the Distance tool line using the Set
line color option.

Constraining movement of the tool to either horizontal or vertical using
the Constrain drag option.
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Getting Information About an Image

To get information about the image displayed in the Image Tool, use the
Image Information tool. The Image Information tool can provide two types of
information about an image:

¢ Basic information — Includes width, height, class, and image type. For
grayscale and indexed images, this information also includes the minimum
and maximum intensity values.

* Image metadata — Displays all the metadata from the graphics file that
contains the image. This is the same information returned by the imfinfo
function or the dicominfo function.

Note The Image Information tool can display image metadata only
when you specify the filename containing the image to Image Tool, e.g.,
imtool( 'moon.tif').

For example, view an image in the Image Tool.

imtool('moon.tif"')

Start the Image Information tool by clicking the Image Information button @
in the Image Tool toolbar or by selecting the Image Information option from
the Tools menu in the Image Tool.
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The following figure shows the Image Tool with the Image Information tool. In
the figure, the Image Information tool displays both basic image information
and image metadata because a file name was specified with imtool.
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Adjusting the Contrast and Brightness of an Image

To adjust the contrast and brightness of the image displayed in the Image
Tool, use the Adjust Contrast tool.

When you start the Adjust Contrast tool, it opens a separate window
containing a histogram of the image displayed in the Image Tool. The
histogram shows the data range of the image and the display range of the
image. The data range is the range of intensity values actually used in the
image. The display range is the black-to-white mapping used to display
the image, which is determined by the image class. The Adjust Contrast
tool works by manipulating the display range; the data range of the image
remains constant.

For example, in the following figure, the histogram for the image shows that
the data range of the image is 74 to 224 and the display range is the default
display range for the uint8 class, 0 to 255. Over this histogram, the Adjust
Contrast tool overlays a red-tinted rectangular box, called a window. By
changing the size of this window, you can modify the display range of the
image and improve its contrast and brightness.

Note The Adjust Contrast tool just affects the display of the image; it does
not change the values of pixels in the image. To change the intensity values
and create a new output image, use imadjust.

For more information about using the Adjust Contrast tool, see these
additional topics:

¢ “Using the Adjust Contrast Tool” on page 4-38

¢ “Example: Adjusting Contrast and Brightness” on page 4-40

® “Using the Window/Level Tool” on page 4-43

¢ “Understanding Contrast Adjustment” on page 4-45
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Using the Adjust Contrast Tool

This section describes how to use the Adjust Contrast tool. Topics covered
include:

e “Starting the Adjust Contrast Tool” on page 4-38
® “Changing the Size of the Adjust Contrast Tool Window” on page 4-39

Note This section describes how to use the Adjust Contrast tool in the Image
Tool. You can also use the Adjust Contrast tool independent of the Image Tool
by calling the imcontrast function. See Chapter 5, “Building GUIs with
Modular Tools” for more information.

Starting the Adjust Contrast Tool
To start the Adjust Contrast tool, follow this procedure:

1 View an image in the Image Tool.

imtool('pout.tif')

2 Click the Adjust Contrast button ® in the Image Tool toolbar, or select
the Adjust Contrast option from the Image Tool Tools menu.

When you start the Adjust Contrast tool, the Image Tool also activates the
Window/Level tool, changing the cursor to the Window/Level cursor “¢. The
Window/Level tool provides another way to adjust contrast and brightness
using the mouse — see “Using the Window/Level Tool” on page 4-43.

Note When you close the Adjust Contrast tool, the Window/Level tool remains
active. To turn off the Window/Level tool, click the Window/Level button or
one of the navigation buttons in the Image Tool toolbar.
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Changing the Size of the Adjust Contrast Tool Window

You adjust the contrast and brightness of the displayed image by manipulating
the window over the histogram in the Adjust Contrast tool. The tool provides
several ways that you can modify the size and position of the window
interactively:

By grabbing one of the red handles on the right and left edges of the
window and dragging it. You can also change the position of the window by
grabbing the center line and dragging the window to the right or left.

By specifying the size and position of the window in the Minimum and
Maximum fields. You can also define these values by clicking the dropper
button associated with these fields. When you do this, the cursor becomes
an eye dropper shape. Position this cursor over the pixel in the image that
you want to be the minimum (or maximum) value and click the mouse
button.

By specifying the size and position of the window in the Width and Center
fields.

By automatically scaling the display range to match the image data range.
For example, with the pout.tif image, if you select the Match data range
option, the window changes from the default display range (0 to 255) to the
data range of the image (74 to 224).

By automatically trimming outliers at the top and bottom of the image data
range. If you select the Eliminate outliers option, the Adjust Contrast
tool removes the top 1% and the bottom 1%, but you can specify other
percentages. When you specify a percentage, the Adjust Contrast tool
applies half the percentage to the top and half to the bottom. (You can
perform this same operation from the command line using the stretchlim
function.)
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The following figure shows the Adjust Contrast tool after some interactive
contrast adjustments.
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Example: Adjusting Contrast and Brightness

This example shows how to use the Adjust Contrast tool to change how pixel
values display as black and white.

1 View an image in the Image Tool. This example opens the image pout.tif,
which is a low-contrast image.

imtool('pout.tif')
2 Start the Adjust Contrast tool by clicking the Adjust Contrast button @

in the Image Tool toolbar, or by selecting Adjust Contrast from the Tools
menu in the Image Tool.
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The following figure shows the image displayed in the Image Tool with the
Adjust Contrast tool open in a separate window. In the figure, note how the
image histogram shows that pixel values are clustered in the middle of the
display range. The display range, shown in the lower right corner of the
Image Tool, is the default display range for uints8.
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3 Adjust the contrast and brightness by changing the size and position of

the window overlaid on the image histogram, using any of the methods
described in “Changing the Size of the Adjust Contrast Tool Window” on
page 4-39.

For example, you can grab either of the handles and resize the window,
and grab the center line and reposition the window. Alternatively, you
can adjust the contrast automatically by trimming outliers at the top and
bottom of the image data range. Select the Eliminate outliers option and
click the Apply button. By default, the Adjust Contrast tool removes the
top 1% and the bottom 1%, but you can specify other percentages. (You can
perform this same operation from the command line using the stretchlim
function.)

The following figure shows the Adjust Contrast tool after some interactive
contrast adjustments.
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The following figure shows the pout.tif image after contrast adjustment.

In this version, note how the adjusted contrast reveals much more detail in
the image background. The Image Tool updates the display range values
displayed in the lower right corner of the Image Tool as you change the size of
the window.

) Image Tool 1 - pouk.tif 10l =|
k|

File Tools ‘Window Help

§30@|@\@\{"?|‘3i;|100% LI

Pixelinfo: (101, 2) &7 Dizplay range: [25 162]

Contrast Adjusted Image

Using the Window/Level Tool

When you start the Adjust Contrast tool you also activate Wipdow/Level
mode; the cursor changes shape to the Window/Level cursor “t. You can also
start the Window/Level tool by clicking the Window/Level button “® in the
Image Tool toolbar. (The name comes from medical applications.)

Using the Window/Level tool, you can change the contrast and brightness of
an image by simply dragging the mouse over the image. Moving the mouse

horizontally affects contrast; moving the mouse vertically affects brightness.

The following table summarizes how these mouse motions affect the size and
position of the window in the Adjust Contrast tool.
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Mouse Motion Effect
Horizontally to the left | #—— | Shrinks the window from both sides.
Horizontally to the — = | Expands the window from both sides.
right
Vertically up Moves the window to the right over the
histogram, increasing brightness.
Vertically down Moves the window to the left over
the image histogram, decreasing
brightness.

To stop the Window/Level tool, click on the Window/Level button in the Image
Tool toolbar, or click any of the navigation buttons in the toolbar.

Example: Adjusting Contrast with the Window/Level Tool

The following example shows how to use the Window/Level tool to improve
the contrast of an image.

1 Read an image from a sample DICOM file included with the toolbox.

I = dicomread('CT-MONO2-16-ankle.dcm');

2 View the image data using the Image Tool. Because the image data is
signed 16-bit data, this example uses the autoscaling syntax.

imtool(I, 'DisplayRange',[])



Adjusting the Contrast and Brightness of an Image

SHLLAL R

3 Click the Window/Level button “ to start the tool, or select
Window/Level from the Tools menu in the Image Tool. The Window/Level
tool also starts when you start the Adjust Contrast tool.

4 Move the cursor over the image. The cursor changes to the Window/Level
cursor e,

5 Press and hold the left (or right) mouse button and move the cursor
horizontally to the left or right to adjust the contrast, or vertically up or
down to change the brightness.

Understanding Contrast Adjustment

An image lacks contrast when there are no sharp differences between black
and white. Brightness refers to the overall lightness or darkness of an image.

To change the contrast or brightness of an image, the Adjust Contrast tool
performs contrast stretching. In this process, pixel values below a specified
value are displayed as black, pixel values above a specified value are displayed
as white, and pixel values in between these two values are displayed as shades
of gray. The result is a linear mapping of a subset of pixel values to the entire
range of grays, from black to white, producing an image of higher contrast.
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The following figure shows this mapping. Note that the lower limit and
upper limit mark the boundaries of the window, displayed graphically as the
red-tinted window in the Adjust Contrast tool.
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Dark Minimum Maximum Light
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Pixel Volues

Relationship of Pixel Values to Display Range

The Adjust Contrast tool accomplishes this contrast stretching by modifying
the CLim property of the axes object that contains the image. The CLim
property controls the mapping of image pixel values to display intensities.

By default, the Image Tool sets the CLim property to the default display range
according to the data type. For example, the display range of an image of class
uint8is from 0 to 255. When you use the Adjust Contrast tool, you change
the contrast in the image by changing the display range which affects the
mapping between image pixel values and the black-to-white range. You create
a window over the range that defines which pixels in the image map to the
black in the display range by shrinking the range from the bottom up.
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Viewing Multiple Images

If you specify a file that contains multiple images, imshow and imtool only
display the first image in the file. To view all the images in the file, import the
images into the MATLAB workspace by calling imread. See “Reading Image
Data” on page 3-3 for more information.

Some applications create collections of images related by time or view, such
as magnetic resonance imaging (MRI) slices or frames of data acquired from
a video stream. The Image Processing Toolbox supports these collections of
images as four-dimensional arrays, where each separate image is called a
frame and the frames are concatenated along the fourth dimension. All the
frames in a multiframe image must be the same size.

Once the images are in the MATLAB workspace, there are two ways to
display them using imshow:

¢ Displaying each image in a separate figure window

¢ Displaying multiple frames in a single figure window

To view all the frames in a multiframe image at once, you can also use the

montage function. See “Displaying All Frames of a Multiframe Image at Once’
on page 4-60 for more information.

4

Displaying Each Image in a Separate Figure

The simplest way to display multiple images is to display them in separate
figure windows. MATLAB does not place any restrictions on the number of
images you can display simultaneously.

The Image Tool can only display one image frame at a time. Each time you
call imtool, it opens a new figure window. Use standard MATLAB indexing
syntax to specify the frame to display.

imtool(multiframe_array(:,:,:,1));

In contrast, imshow always displays an image in the current figure. If you
display two images in succession, the second image replaces the first image.
To view multiple figures with imshow, use the figure command to explicitly
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create a new empty figure before calling imshow for the next image. For
example, to view the first three frames in an array of grayscale images I,

imshow(I(:,:,:,1))
figure, imshow(I(:,:,:,2))
figure, imshow(I(:,:,:,3))

The Image Tool can only display one image frame at a time. Use standard
MATLAB indexing syntax to specify the frame to display.

imtool(multiframe_array(:,:,:,1));

Displaying Multiple Images in the Same Figure

You can use the imshow function with the MATLAB subplot function or the
MATLAB subimage function to display multiple images in a single figure
window.

Note imtool does not support this capability.

Dividing a Figure Window into Multiple Display Regions
subplot divides a figure into multiple display regions. The syntax of subplot
is

subplot(m,n,p)

This syntax divides the figure into an m-by-n matrix of display regions and
makes the pth display region active.

Note When you use subplot to display multiple color images in one figure
window, the images must share the colormap of the last image displayed. In
some cases, as illustrated by the following example, the display results can be
unacceptable. As an alternative, you can use the subimage function, described
in “Using the subimage Function to Display Multiple Images” on page 4-50, or
you can map all images to the same colormap as you load them.
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For example, you can use this syntax to display two images side by side.

[X1,map1]=imread('forest.tif');
[X2,map2]=imread('trees.tif');

subplot(1,2,1), imshow(X1,map1)
subplot(1,2,2), imshow(X2,map2)

In the figure, note how the first image displayed, X1, appears dark after the
second image is displayed.

TSN —ipix]

File Edit Wiew Insett Tools Desktop ‘window Help

DEES KRAOMS®|E 08B 1O

Two Images in Same Figure Using the Same Colormap
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Using the subimage Function to Display Multiple Images
subimage converts images to truecolor before displaying them and therefore
circumvents the colormap sharing problem. This example uses subimage to
display the forest and the trees images with better results.

[X1,map1]=imread('forest.tif');
[X2,map2]=imread('trees.tif');
subplot(1,2,1), subimage(X1,map1)
subplot(1,2,2), subimage(X2,map2)

drguet ~lolx|

File Edit Wiew Insett Tools Desktop ‘window Help a

DEES KRAMS®|E 0B 1O
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Two Images in Same Figure Using Separate Colormaps
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Displaying Different Image Types

This section describes how to use imshow and imtool with the different types
of images supported by the Image Processing Toolbox.

¢ Indexed images
® Grayscale (intensity) images
* Binary images

® Truecolor (RGB) images

If you need help determining what type of image you are working with, see
“Image Types in the Toolbox” on page 2-7.

Displaying Indexed Images

To display an indexed image, using either imshow or imtool, specify both
the image matrix and the colormap. This documentation uses the variable
name X to represent an indexed image in the workspace, and map to represent
the colormap.

imshow (X, map)
or
imtool(X,map)

For each pixel in X, these functions display the color stored in the
corresponding row of map. If the image matrix data is of class double, the
value 1 points to the first row in the colormap, the value 2 points to the second
row, and so on. However, if the image matrix data is of class uint8 or uint16,
the value 0 (zero) points to the first row in the colormap, the value 1 points to
the second row, and so on. This offset is handled automatically by the imtool
and imshow functions.

If the colormap contains a greater number of colors than the image, the
functions ignore the extra colors in the colormap. If the colormap contains
fewer colors than the image requires, the functions set all image pixels over
the limits of the colormap’s capacity to the last color in the colormap. For
example, if an image of class uint8 contains 256 colors, and you display it
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with a colormap that contains only 16 colors, all pixels with a value of 15 or
higher are displayed with the last color in the colormap.

Displaying Grayscale Images

To display a grayscale image, using either imshow or imtool, specify the
image matrix as an argument. This documentation uses the variable name I
to represent a grayscale image in the workspace.

imshow(I)

or

imtool(I)

Both functions display the image by scaling the intensity values to serve
as indices into a grayscale colormap.

If I is double, a pixel value of 0.0 is displayed as black, a pixel value of 1.0
is displayed as white, and pixel values in between are displayed as shades
of gray. If I is uint8, then a pixel value of 255 is displayed as white. If I is
uint16, then a pixel value of 65535 is displayed as white.

Grayscale images are similar to indexed images in that each uses an m-by-3
RGB colormap, but you normally do not specify a colormap for a grayscale
image. MATLAB displays grayscale images by using a grayscale system
colormap (where R=G=B). By default, the number of levels of gray in the
colormap is 256 on systems with 24-bit color, and 64 or 32 on other systems.
(See “Working with Different Screen Bit Depths” on page 14-2 for a detailed
explanation.)

Displaying Grayscale Images That Have Unconventional
Ranges

In some cases, the image data you want to display as a grayscale image
might have a display range that is outside the conventional toolbox range
(i.e., [0,1] for single or double arrays, [0,255] for uint8 arrays, [0,65535] for
uint16 arrays, or [-32767,32768] for int16 arrays). For example, if you filter
a grayscale image, some of the output data might fall outside the range of
the original data.
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To display unconventional range data as an image, you can specify the display
range directly, using this syntax for both the imshow and imtool functions.

imshow(I, 'DisplayRange’',[low high])
or
imtool(I, 'DisplayRange',[low high])

If you use an empty matrix ([ ]) for the display range, these functions scale
the data automatically, setting 1ow and high to the minimum and maximum
values in the array.

The next example filters a grayscale image, creating unconventional range
data. The example calls imtool to display the image, using the automatic
scaling option. If you execute this example, note the display range specified in
the lower right corner of the Image Tool window.

I imread('testpati.png');
J = filter2([1 2;-1 -21,1);
imtool(J, 'DisplayRange',[]);

i
a

File Tools ‘Window Help
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Displaying Binary Images

In MATLAB, a binary image is of class 1logical. Binary images contain only
0’s and 1’s. Pixels with the value 0 are displayed as black; pixels with the
value 1 are displayed as white.

Note For the toolbox to interpret the image as binary, it must be of class
logical. Grayscale images that happen to contain only 0’s and 1’s are not
binary images.

To display a binary image, using either imshow or imtool, specify the image
matrix as an argument. For example, this code reads a binary image into the
MATLAB workspace and then displays the image. This documentation uses
the variable name BW to represent a binary image in the workspace

BW = imread('circles.png');
imshow (BW)

or

imtool (BW)

Changing the Display Colors of a Binary Image

You might prefer to invert binary images when you display them, so that 0
values are displayed as white and 1 values are displayed as black. To do this,
use the NOT (~) operator in MATLAB. (In this figure, a box is drawn around
the image to show the image boundary.) For example:
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imshow (~BW)
or

imtool (~BW)

You can also display a binary image using the indexed image colormap
syntax. For example, the following command specifies a two-row colormap
that displays 0’s as red and 1’s as blue.

imshow(BW,[1 0 0; 0 0 1])

imtool(BW,[1 0 0; 0 0 11])
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Displaying Truecolor Images

Truecolor images, also called RGB images, represent color values directly,
rather than through a colormap. A truecolor image is an m-by-n-by-3 array.
For each pixel (r,c) in the image, the color is represented by the triplet
(r,c,1:3).

To display a truecolor image, using either imshow or imtool, specify the image
matrix as an argument. For example, this code reads a truecolor image into
the MATLAB workspace and then displays the image. This documentation
uses the variable name RGB to represent a truecolor image in the workspace

RGB = imread( peppers.png');
imshow (RGB)

or

imtool (RGB)
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Systems that use 24 bits per screen pixel can display truecolor images
directly, because they allocate 8 bits (256 levels) each to the red, green, and
blue color planes. On systems with fewer colors, imshow displays the image
using a combination of color approximation and dithering. See “Working with
Different Screen Bit Depths” on page 14-2 for more information.

Note If you display a color image and it appears in black and white, check if
the image is an indexed image. With indexed images, you must specify the
colormap associated with the image. For more information, see “Displaying
Indexed Images” on page 4-51.
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Special Display Techniques

In addition to imshow and imtool, the toolbox includes functions that perform
specialized display operations, or exercise more direct control over the display
format. These functions, together with the MATLAB graphics functions,
provide a range of image display options.

This section includes the following topics:

¢ “Adding a Colorbar” on page 4-58
¢ “Displaying All Frames of a Multiframe Image at Once” on page 4-60
¢ “Converting a Multiframe Image to a Movie” on page 4-61

e “Texture Mapping” on page 4-62

Adding a Colorbar

To display an image with a colorbar that indicates the range of intensity
values, first use the imshow function to display the image in a MATLAB figure
window and then call the colorbar function to add the colorbar to the image.

When you add a colorbar to an axes object that contains an image object,
the colorbar indicates the data values that the different colors in the image
correspond to.

If you want to add a colorbar to an image displayed in the Image Tool, select
the Print to Figure option from the Image Tool File menu. The Image
Tool displays the image in a separate figure window to which you can add a
colorbar.

Seeing the correspondence between data values and the colors displayed by
using a colorbar is especially useful if you are displaying unconventional
range data as an image, as described under “Displaying Grayscale Images
That Have Unconventional Ranges” on page 4-52.
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In the example below, a grayscale image of class uint8 is filtered, resulting in
data that is no longer in the range [0,255].

RGB = imread('saturn.png');

I = rgb2gray(RGB);

h=1[121; 000; -1 -2 -1];

I2 = filter2(h,I);

imshow(I2, 'DisplayRange',[]), colorbar
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Displaying All Frames of a Multiframe Image at Once

To view all the frames in a multiframe array at one time, use the montage
function. montage divides a figure window into multiple display regions and
displays each image in a separate region.

The syntax for montage is similar to the imshow syntax. To display a
multiframe grayscale image, the syntax is

montage (I)

To display a multiframe indexed image, the syntax is

montage (X, map)

Note All the frames in a multiframe indexed array must use the same
colormap.

This example loads and displays all frames of a multiframe indexed image.
The example initializes an array to hold the 27 frames in the multiframe
image file and then loops, using imread to read a single frame from the image
file at each iteration.

mri = uint8(zeros(128,128,1,27));

for frame=1:27

[mri(:,:,:,frame),map] = imread('mri.tif',frame);
end
montage (mri,map);
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All Frames of Multiframe Image Displayed in One Figure

montage displays the first frame in the first position of the first row, the next
frame in the second position of the first row, and so on. montage arranges the
frames so that they roughly form a square.

Converting a Multiframe Image to a Movie

To create a MATLAB movie from a multiframe image array, use the immovie
function. This example creates a movie from a multiframe indexed image.

mov = immovie(X,map);

In the example, X is a four-dimensional array of images that you want to
use for the movie.

You can play the movie in MATLAB using the movie function.

movie(mov);

This example loads the multiframe image mri.tif and makes a movie out of
it. It won’t do any good to show the results here, so try it out; it’s fun to watch.
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mri = uint8(zeros(128,128,1,27));
for frame=1:27

[mri(:,:,:,frame),map] = imread('mri.tif',frame);
end

mov = immovie(mri,map);
movie(mov);

Note that immovie displays the movie as it is being created, so you actually see
the movie twice. The movie runs much faster the second time (using movie).

Note To view a MATLAB movie, you must have MATLAB installed. To
make a movie that can be run outside MATLAB, use the MATLAB avifile
and addframe functions to create an AVI file. AVI files can be created using
indexed and RGB images of classes uint8 and double, and don’t require

a multiframe image.

Texture Mapping

When you use imshow or imtool to view an image, MATLAB displays

the image in two dimensions. However, it is also possible to map an
image onto a parametric surface, such as a sphere, or below a surface plot.
The warp function creates these displays by texture mapping the image.
Texture mapping is a process that maps an image onto a surface grid using
interpolation.

This example texture-maps an image of a test pattern onto a cylinder.

[x,y,z] = cylinder;
I = imread('testpati.png');
War\p(xly7z71);
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L |

An Image Texture-Mapped onto a Cylinder

The image might not map onto the surface in the way that you expect. One
way to modify the way the texture map appears is to change the settings of
the Xdir, Ydir, and Zdir properties. For more information, see Changing Axis
Direction in the MATLAB Graphics documentation.

For more information about texture mapping, see the reference entry for
the warp function.
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Printing Images

If you want to output a MATLAB image to use in another application (such as
a word-processing program or graphics editor), use imwrite to create a file in
the appropriate format. See “Writing Image Data” on page 3-5 for details.

If you want to print an image, use imshow to display the image in a MATLAB
figure window. If you are using the Image Tool, you must use the Print to
Figure option on the Image Tool File menu. When you choose this option, the
Image Tool opens a separate figure window and displays the image in it. You
can access the standard MATLAB printing capabilities in this figure window.
You can also use the Print to Figure option to print the image displayed in
the Overview tool and the Pixel Region tool.

Once the image is displayed in a figure window, you can use either the
MATLAB print command or the Print option from the File menu of the
figure window to print the image. When you print from the figure window,
the output includes nonimage elements such as labels, titles, and other
annotations.

Printing and Handle Graphics Object Properties

The output reflects the settings of various properties of Handle Graphic
objects. In some cases, you might need to change the settings of certain
properties to get the results you want. Here are some tips that might be
helpful when you print images:

® Image colors print as shown on the screen. This means that images are not
affected by the figure object’s InvertHardcopy property.

¢ To ensure that printed images have the proper size and aspect ratio,
set the figure object’s PaperPositionMode property to auto. When
PaperPositionMode is set to auto, the width and height of the printed
figure are determined by the figure’s dimensions on the screen. By default,
the value of PaperPositionMode is manual. If you want the default value of
PaperPositionMode to be auto, you can add this line to your startup.m file.

set (0, 'DefaultFigurePaperPositionMode’', 'auto')



Printing Images

For detailed information about printing with File/Print or the print
command (and for information about Handle Graphics), see “Printing and
Exporting” in the MATLAB Graphics documentation. For a complete list
of options for the print command, enter help print at the MATLAB
command-line prompt or see the print command reference page in the
MATLAB documentation.
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Setting Toolbox Display Preferences

You can use Image Processing Toolbox preferences to control certain
characteristics of how imshow and imtool display images on your screen. For
example, using toolbox preferences, you can specify the initial magnification
used by imtool and imshow.

This section

¢ Lists the preferences supported by the toolbox

® Describes how to get the current value of a preference using the iptgetpref
function

® Describes how to set the value of a preference using the iptsetpref
function

Toolbox Preferences

The Image Processing Toolbox supports several preferences that affect
how imshow and imtool display images. The following table lists these
preferences with brief descriptions. For detailed information about toolbox
preferences and their values, see the iptsetpref reference page.

Toolbox Preference Description

ImshowBorder Controls whether imshow displays
the figure window as larger than
the image (leaving a border between
the image axes and the edges of the
figure), or the same size as the image
(leaving no border).

ImshowAxesVisible Controls whether imshow displays

images with the axes box and tick
labels.
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Toolbox Preference Description

ImshowInitialMagnification Controls the magnification imshow
uses when it initially displays an
image. This preference can be
overridden for a single call to imshow;
see “Specifying the Initial Image
Magnification” on page 4-6 for more
details.

ImtoolInitialMagnification Controls the magnification the Image
Tool uses when it initially displays
an image. This preference can be
overridden for a single call to imtool;
see “Specifying the Initial Image
Magnification” on page 4-12 for more
details.

Retrieving the Values of Toolbox Preferences
To determine the current value of a preference, use the iptgetpref

function. This example uses iptgetpref to determine the value of the
ImtoolInitialMagnification preference.

iptgetpref ('ImtoolInitialMagnification')

ans =

100

Preference names are case insensitive and can be abbreviated. For more
information, see the iptgetpref reference page.
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Setting the Values of Toolbox Preferences

To specify the value of a toolbox preference, use the iptsetpref function. This
example calls iptsetpref to specify that imshow resize the figure window so
that it fits tightly around displayed images.

iptsetpref('ImshowBorder', 'tight');

For detailed information about toolbox preferences and their values, see the
iptsetpref reference page.

The value you specify lasts for the duration of the current MATLAB session.

To preserve your preference settings from one session to the next, include the
iptsetpref commands in your startup.m file.
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Building GUIs with
Modular Tools

This chapter describes how to use the toolbox modular tools to create custom
image processing applications.

Overview (p. 5-2) Lists the modular interactive tools

Using Modular Tools (p. 5-6) Describes how to use the modular
tools to create GUIs

Creating Your Own Modular Tools Describes the utility function the
(p. 5-31) toolbox provides to help you create
your own modular tools



5 Building GUIs with Modular Tools

Overview

The toolbox includes several new modular interactive tools that you can
activate from the command line and use with images displayed in a MATLAB
figure window, called the target image in this documentation. The tools are
modular because they can be used independently or in combination to create
custom graphical user interfaces (GUIs) for image processing applications.
The Image Tool uses these modular tools — see “Using the Image Tool to
Explore Images” on page 4-9

The following table lists the modular tools in alphabetical order. The table
includes an illustration of each tool and the function you use to create it. For
more information about how the tools operate, see “Using the Image Tool to
Explore Images” on page 4-9. For more information about using tools to create
GUIs, see “Using Modular Tools” on page 5-6.

Modular Tool

Example Description

Adjust Contrast
tool

Displays a histogram of the target image

b E WD GelF # | and enables interactive adjustment of
Mlﬁf"j:f”fe_u' i T ek | v contrast and brightness by manipulation
’;aximum- [ | [Masimurn WZ’ Certer, of the display range.

' ¢

Use the imcontrast function to create

Mm ‘:' / the tool in a separate figure window and
Pe associate it with an image.
2 - 2 g7
Display Range Display range: [0 255] Displays a text string identifying the
tool display range values of the associated
image.

Use the imdisplayrange function to
create the tool, associate it with an image,
and embed it in a figure or uipanel.
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Modular Tool

Example

Description

Distance tool

Displays a draggable, resizable line on

an image. Superimposed on the line is

the distance between the two endpoints
of the line. The distance is measured in
units specified by the XData and YData

properties, which is pixels by default.

Use the imdistline function to create the
tool and associate it with an image.

Image
Information tool

-} Image Information {Image Tool 1}
3

Image details (mage Toal 1 - moon tif

Aftribute

“alue

1 Eﬂmh {calurmns)

356

2 Height (rows)

537

3 Class

uirtd

4 Inage type

intensity

S Minimum intensity

0

B Mzximum intensity

253

Metadata (moon.tif)

{
{
!

Displays basic attributes about the
target image. If the image displayed
was specified as a graphics file, the tool
displays any metadata that the image file
might contain.

Use the imageinfo function to create
the tool in a separate figure window and

Fieiohame associate it with an image.
1_E\Isname \wﬁhwurks\develwaﬂy
2 |FileModDate 04-Dec-2000 135759
3 [FileSize 183950 P
4 |Format it
5 |FormatVersion 0n )
it n _ ameeminton o got mgg )
Magnification [ Creates a text edit box containing the
100% o . .
box current magnification of the target image.

Users can change the magnification of the
image by entering a new magnification
value.

Use immagbox to create the tool, associate
it with an image, and embed it in a figure
or uipanel.

Note The target image must be contained
in a scroll panel.
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Modular Tool | Example Description
Overview tool Displays the target image in its entirety

File Edit ‘Window Help

=10l x|

~ P

with the portion currently visible in

the scroll panel outlined by a rectangle
superimposed on the image. Moving the
rectangle changes the portion of the target
image that is currently visible in the scroll
panel.

Use imoverview to create the tool in a
separate figure window and associate it
with an image.

Use imoverviewpanel to create the tool
in a uipanel that can be embedded within
another figure or uipanel.

Note The target image must be contained
in a scroll panel.

Pixel
Information tool

Pixel infa: (418, 261) 143

Displays information about the pixel the
mouse is over in the target image.

Use impixelinfo to create the tool,
associate it with an image, and display it
in a figure or uipanel.

If you want to display only the pixel
values, without the Pixel info label, use
impixelinfoval.




Overview

Modular Tool | Example Description
Pixel Region tool o) x| Display pixel values for a specified region
Fle Edt Window Help ¥ in the target image.
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Pixel info: (134, 230) 183

Use impixelregion to create the tool in a
separate figure window and associate it
with an image.

Use impixelregionpanel to create the
tool as a uipanel that can be embedded
within another figure or uipanel.

Scroll Panel tool

) Figuel =IOl x|

File Edit Wiew Insert Tools Deskbop Window Help

DSEE h|RAMHB|E|”

Display target image in a scrollable panel.

Use imscrollpanel to add a scroll panel
to an image displayed in a figure window.
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Using Modular Tools

To use the modular tools to create custom graphical user interfaces (GUIs) for
image processing applications, follow this general procedure:

1 Display the target image in a figure window.

Image processing applications typically use the imshow function to display
the target image, i.e., the image being processed. See “Displaying the
Target Image” on page 5-7 for more information.

Create the modular tool, specifying the target image.

When you create a tool, you must associate it with a target image. Most
of the tools associate themselves with the image in the current axes, by
default. But you can specify the handle to a specific image object, or a
handle to a figure, axes, or uipanel object that contains an image. See
“Specifying the Target Image” on page 5-8 for more information.

Depending on how you designed your GUI, you might also want to specify

the parent object of the modular tool itself. This is optional; by default, the
tools either use the same parent as the target image or open in a separate

figure window. See “Specifying the Parent of a Modular Tool” on page 5-12
for more information.

In addition, when you create custom GUIs, you might need to specify the
position of the graphics objects in the GUI, including the modular tools. See
“Positioning the Modular Tools in a GUI” on page 5-15 for more information.

Set up interactivity between the tool and the target image.

This is an optional step. The modular tools all set up their interactive
connections to the target image automatically. However, your GUI might
require some additional connectivity. See “Making Connections for
Interactivity” on page 5-25.
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Many of the modular tools support application programmer interfaces
(APIs) that let you assign values to their properties, get the values of
their properties, and control other aspects of their functioning. See “Using
Modular Tool APIs” on page 5-26 for more information.

The following sections provide more detail on these steps. For a complete
illustration, see “Example: Building a Pixel Information GUI” on page 5-17.

Displaying the Target Image

As the foundation for any image processing GUI you create, use imshow to
display the target image (or images) in a MATLAB figure window. (You
can also use the MATLAB image or imagesc functions.) Once the image is
displayed in the figure, you can associate any of the modular tools with the
image displayed in the figure.

This example uses imshow to display an image in a figure window.

himage = imshow('pout.tif');

Because some of the modular tools add themselves to the figure window
containing the image, make sure that the Image Processing Toolbox
ImshowBorder preference is set to 'loose’, if you are using the imshow
function. (This is the default setting.) By including a border, you ensure that
the modular tools are not displayed over the image in the figure.
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Specifying the Target Image

To associate a modular tool with a target image displayed in a MATLAB
figure window, create the tool using the appropriate tool creation function,
specifying a handle to the target image as an argument. The function creates
the tool and automatically sets up the interactivity connection between the
tool and the target image.

This section covers the following topics:

® “Associating Modular Tools with the Default Target Image” on page 5-8
® “Associating Modular Tools with a Particular Image” on page 5-10

® “Getting the Handle of the Target Image” on page 5-11

Associating Modular Tools with the Default Target Image

By default, most of the modular tool creation functions support a no-argument
syntax that uses the image in the current figure as the target image. If

the current figure contains multiple images, the tools associate themselves
with the first image in the figure object’s children (the last image created).
impixelinfo, impixelinfoval and imdisplayrange can work with multiple
images in a figure.

For example, to use the Pixel Information tool with a target image, display
the image in a figure window, using imshow, and then call the impixelinfo
function to create the tool. In this example, the image in the current figure is
the target image.

imshow( 'pout.tif');
impixelinfo
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The following figure shows the target image in a figure with the Pixel
Information tool in the lower left corner of the window. The Pixel Information
tool automatically sets up a connection to the target image: when you move
the cursor over the image, the tool displays the x- and y-coordinates and value
of the pixel under the cursor.

) Fgurer R (=

File Edit Yiew Insert Tools Deskbop Window Help u

DEeE&S| kRO (€ 08|80

Target image

Pixel

information tool ————— Pixelinto: x, ) Intensity

Figure Window with Pixel Information Tool
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Associating Modular Tools with a Particular Image

You can specify the target image of the modular tool when you create it by
passing a handle to the target image as an argument to the modular tool
creation function. You can also specify a handle to a figure, axes, or uipanel
object that contains the target image.

Continuing the example in the previous section, you might want to add the
Display Range tool to the figure window that already contains the Pixel
Information tool. To do this, call the imdisplayrange function, specifying the
handle to the target image. You could also have specified the handle of the
figure, axes, or uipanel object containing the target image.

himage = imshow( 'pout.tif');
hpixelinfopanel = impixelinfo(himage);
hdrangepanel = imdisplayrange(himage);

Note that the example retrieves handles to the uipanel objects created by
the impixelinfo and imdisplayrange functions; both tools are uipanel
objects. It can be helpful to get handles to the tools if you want to change
their positioning. See “Positioning the Modular Tools in a GUI” on page 5-15
for more information.

The following figure shows the target image in a figure with the Pixel
Information tool in the lower left corner and the Display Range tool in the
lower right corner of the window. The Display Range tool automatically sets
up a connection to the target image: when you move the cursor over the image
(or images) in the figure, the Display Range tool shows the display range

of the image.
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Figure Window with Pixel Information and Display Range Tools

Getting the Handle of the Target Image

The examples in the previous section use the optional imshow syntax that
returns a handle to the image displayed, himage. When creating GUIs with
the modular tools, having a handle to the target image can be useful. You can
get the handle when you first display the image, using this optional imshow
syntax. You can also get a handle to the target image using the imhandles
function. The imhandles function returns all the image objects that are
children of a specified figure, axes, uipanel, or image object.
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For example, imshow returns a handle to the image in this syntax.

hfig = figure;
himage = imshow( 'moon.tif"')
himage

152.0055

When you call the imhandles function, specifying a handle to the figure (or
axes) containing the image, it returns a handle to the same image.

himage?2
himage?2

imhandles(hfig)

152.0055

Specifying the Parent of a Modular Tool

When you create a modular tool, in addition to specifying the target image,
you can optionally specify the object that you want to be the parent of the
tool. By specifying the parent, you determine where the tool appears on your
screen. Using this syntax of the modular tool creation functions, you can add
the tool to the figure window containing the target image, open the tool in a
separate figure window, or create some other combination.

Specifying the parent is optional; the modular tools all have a default
behavior. Some of the smaller tools, such as the Pixel Information tool, use
the parent of the target image as their parent, inserting themselves in the
same figure window as the target image. Other modular tools, such as the
Pixel Region tool or the Overview tool, open in separate figures of their own.

Tools With Separate Creation Functions

Two of the tools, the Pixel Region tool and the Overview tool, have a separate
creation function to provide this capability. Their primary creation functions,
imoverview and impixelregion, open the tools in a separate figure window.
To specify a different parent, you must use the imoverviewpanel and
impixelregionpanel functions.
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Note The Overview tool and the Pixel Region tool provide additional
capabilities when created in their own figure windows. For example, both
tools include zoom buttons that are not part of their uipanel versions.

Example: Embedding the Pixel Region Tool in an Existing
Figure

This example shows the default behavior when you create the Pixel Region
tool using the impixelregion function. The tool opens in a separate figure
window, as shown in the following figure.

himage = imshow( 'pout.tif')
hpixelinfopanel = impixelinfo(himage);
hdrangepanel = imdisplayrange(himage);
hpixreg = impixelregion(himage);

BT o]
File Edit WYiew Insert Tools Deskbop ‘Window Help £ FIlE|RBg'IDFI
NS h|RAN®|(E 0B » ool
1=
File Edit ‘Wwindow Help £

BE 7

Pixel Region
rectungle

Pixel info: (122, 148) 121

Pixcel info: 0, %) Intensity Display range: [0 255]

Target Image with Pixel Region Tool in Separate Window (Default)
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To embed the Pixel Region tool in the same window as the target image, you
must specify the handle of the target image’s parent figure as the parent of
the Pixel Region tool when you create it.

The following example creates a figure and an axes object, getting handles to
both objects. The example needs these handles to perform some repositioning
of the objects in the figure to ensure their visibility. See “Positioning the
Modular Tools in a GUI” on page 5-15 for more information. The example
then creates the modular tools, specifying the figure containing the target
image as the parent of the Pixel Region tool. Note that the example uses the
impixelregionpanel function to create the tool.

hfig = figure;

hax = axes('units', 'normalized', 'position',[0 .5 1 .5]);
himage = imshow( 'pout.tif')

hpixelinfopanel = impixelinfo(himage);

hdrangepanel = imdisplayrange(himage);

hpixreg = impixelregionpanel(hfig,himage);

set(hpixreg, 'Units', 'normalized', 'Position',[0 .08 1 .4]);
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The following figure shows the Pixel Region embedded in the same figure
as the target image.

File Edit Wiew Insert Tools Desktop ‘Window Help

D& K &RaAN® | 0| O

g =

Pixel Region
tool embedded
in figure
window

Pixelinfo: (106, 4) 89 Display range: [0 255]

Target Image with Embedded Pixel Region Tool

Positioning the Modular Tools in a GUI

When you create the modular tools, they have default positioning behavior.
For example, the impixelinfo function creates the tool as a uipanel object
that is the full width of the figure window, positioned in the lower left corner
of the target image figure window.

Because the modular tools are constructed from standard Handle Graphics
objects, such as uipanel objects, you can use properties of the objects to change

their default positioning or other characteristics.

For example, in “Specifying the Parent of a Modular Tool” on page 5-12, when
the Pixel Region tool was embedded in the same figure window as the target
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image, the example had to reposition both the image object and the Pixel
Region tool uipanel object to make them both visible in the figure window.

Specifying the Position with a Position Vector

To specify the position of a modular tool or other graphics object, set the
value of the Position property of the object. As the value of this property,
you specify a four-element position vector [left bottom width height],
where left and bottom specify the distance from the lower left corner of
the parent container object, such as a figure. The width and height specify
the dimensions of the object.

When you use a position vector, you can specify the units of the values in
the vector by setting the value of the Units property of the object. To allow
better resizing behavior, use normalized units because they specify the
relative position, not the exact location in pixels. See the reference page for
the Handle Graphics object for more details.

For example, when you first create an embedded Pixel Region tool in a figure,
it appears to take over the entire figure because, by default, the position
vector is set to [0 0 1 1], in normalized units. This position vector tells the
tool to align itself with the bottom left corner of its parent and fill the entire
object. To accommodate the image and the Pixel Information tool and Display
Range tools, change the position of the Pixel Region tool in the lower half of
the figure window, leaving room at the bottom for the Pixel Information and
Display Range tools. Here is the position vector for the Pixel Region tool.

set(hpixreg, 'Units', 'normalized', 'Position',[0 .08 1 .4])

To accommodate the Pixel Region tool, reposition the target image so that it
fits in the upper half of the figure window, using the following position vector.
To reposition the image, you must specify the Position property of the axes
object that contains it; image objects do not have a Position property.

set(hax, 'Units', 'normalized', 'Position',[0 0.5 1 0.5])
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Example: Building a Pixel Information GUI

This example shows how to use the tools to create a simple GUI that provides
information and pixels and features in an image. The GUI displays an image
and includes the following modular pixel information tools:

Display Range tool

Distance tool

Pixel Information tool

Pixel Region tool panel

The example suppresses the figure window toolbar and menu bar because
the standard figure zoom tools are not compatible with the toolbox modular
navigation tools — see “Adding Navigation Aids to a GUI” on page 5-19.

function my_pixinfotool(im)

% Create figure, setting up properties

hfig = figure('Toolbar', 'none’',...
'Menubar', 'none',...
"Name', 'My Pixel Info Tool',...
"NumberTitle', 'off',...
'IntegerHandle’', 'off');

% Create axes and reposition the axes

to accommodate the Pixel Region tool panel
hax = axes('Units', 'normalized’,...
"Position',[0 .5 1 .5]);

% Display image in the axes and get a handle to the image
himage = imshow(im);

% Add Distance tool, specifying axes as parent
hdist = imdistline(hax);

% Add Pixel Information tool, specifying image as parent
hpixinfo = impixelinfo(himage);

% Add Display Range tool, specifying image as parent
hdrange = imdisplayrange(himage);
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% Add Pixel Region tool panel, specifying figure as parent
% and image as target
hpixreg = impixelregionpanel(hfig,himage);

% Reposition the Pixel Region tool to fit in the figure
window, leaving room for the Pixel Information and

% Display Range tools.

set(hpixreg, 'units', 'normalized', 'position',[0 .08 1 .4])

o°

To use the tool, pass it an image that is already in the MATLAB workspace.

pout = imread('pout.tif');
my_pixinfotool(pout)

The tool opens a figure window, displaying the image in the upper half, with
the Distance tool overlaid on the image, and the Pixel Information tool,
Display Range tool, and the Pixel Region tool panel in the lower half of the
figure.
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rypmeimotoo e

Pixel info: (X, %) Intensity Display range: [0 255]

Custom Image Display Tool with Pixel Information

Adding Navigation Aids to a GUI

Note The toolbox modular navigation tools are incompatible with standard
MATLAB figure window navigation tools. When using these tools in a GUI,
suppress the toolbar and menu bar in the figure windows to avoid conflicts
between the tools.

The toolbox includes several modular tools that you can use to add navigation
aids to a GUI application:

e Scroll Panel
e Overview tool

® Magnification box
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The Scroll Panel is the primary navigation tool; it is a prerequisite for the
other navigation tools. When you display an image in a Scroll Panel, the
tool displays only a portion of the image, if it is too big to fit into the figure
window. When only a portion of the image is visible, the Scroll Panel adds
horizontal and vertical scroll bars, to enable viewing of the parts of the image
that are not currently visible.

Once you create a Scroll Panel, you can optionally add the other modular
navigation tools: the Overview tool and the Magnification tool. The Overview
tool displays a view of the entire image, scaled to fit, with a rectangle
superimposed over it that indicates the part of the image that is currently
visible in the scroll panel. The Magnification Box displays the current
magnification of the image and can be used to change the magnification.

The following sections provide more details.

¢ “Understanding Scroll Panels” on page 5-20 — Adding a scroll panel to an
image display changes the relationship of the graphics objects used in the
display. This section provides some essential background.

¢ “Example: Building a Navigation GUI for Large Images” on page 5-23 —
This section shows how to add a scroll panel to an image display.

Understanding Scroll Panels

When you display an image in a scroll panel, it changes the object hierarchy
of your displayed image. This diagram illustrates the typical object hierarchy
for an image displayed in an axes object in a figure object.

hfig = figure;
himage = imshow('concordaerial.png');
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The following figure shows this object hierarchy.

Figure

lmage

Object Hierarchy of Image Displayed in a Figure

When you call the imscrollpanel function to put the target image in a
scrollable window, this object hierarchy changes. For example, this code
adds a scroll panel to an image displayed in a figure window, specifying the
parent of the scroll panel and the target image as arguments. The example
suppresses the figure window toolbar and menu bar because they are not
compatible with the scroll panel navigation tools.

hfig = figure('Toolbar', 'none',...
"Menubar', 'none');

himage = imshow('concordaerial.png');

hpanel imscrollpanel(hfig,himage);

5-21



5 Building GUIs with Modular Tools

5-22

The following figure shows the object hierarchy after the call to
imscrollpanel. Note how imscrollpanel inserts new objects (shaded
in gray) into the hierarchy between the figure object and the axes object
containing the image.

Figure

Uipanel
[Scrall panel)
|

I [ |
Uipanel uicantral vicntral frame [
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Image

Object Hierarchy of Image Displayed in Scroll Panel
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The following figure shows how these graphics objects appear in the scrollable
image as it is displayed on the screen.

Serolloble imoge

Seroll panel
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Slider

Corner

Slider

Components of a Scroll Panel

Example: Building a Navigation GUI for Large Images

If your work typically requires that you view large images, you might want to
create a custom image display function that includes the modular navigation
tools.

This example creates a tool that accepts an image as an argument and displays
the image in a scroll panel with an Overview tool and a Magnification box.
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Note Because the toolbox scrollable navigation is incompatible with standard
MATLAB figure window navigation tools, the example suppresses the toolbar
and menu bar in the figure window.

function my_large_image_display(im)

% Create a figure without toolbar and menubar.
hfig = figure('Toolbar', 'none’,...
'Menubar', 'none',...
"Name', 'My Large Image Display Tool',...
"NumberTitle', 'off',...
"IntegerHandle', 'off');

% Display the image in a figure with imshow.
himage = imshow(im);

% Add the scroll panel.
hpanel = imscrollpanel(hfig,himage);

% Position the scroll panel to accommodate the other tools.
set(hpanel, 'Units', 'normalized', 'Position',[0 .1 1 .9]1);

% Add the Magnification box.
hMagBox = immagbox(hfig,himage);

% Position the Magnification box
pos = get(hMagBox, 'Position');
set(hMagBox, 'Position',[0 O pos(3) pos(4)]);

% Add the Overview tool.
hovervw = imoverview(himage);

To use the tool, pass it a large image that is already in the MATLAB
workspace.

big _image = imread('peppers.png');
my_large_image_display(big_image)
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The tool opens a figure window, displaying the image in a scroll panel with
the Overview tool and the Magnification Box tool.

) My Large Image Display Tool

Overview tool
) overvien SOSSSRNI=TEY
File Edit ‘Windomw Help L
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box 100%

Custom Image Display Tool with Navigation Aids

Making Connections for Interactivity

When you create a modular tool and associate it with a target image, the
tool automatically makes the necessary connections to the target image to
do its job.

For example, the Pixel Information tool sets up a connection to the target
image so that it can display the location and value of the pixel currently

under the cursor. The Overview tool sets up a two-way connection to the

target image:

¢ Target image to the Overview tool — If the visible portion of the image
changes, by scrolling, panning, or by changing the magnification, the
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Overview tool changes the size and location of the detail rectangle to the
indicate the portion of the image that is now visible.

* Overview tool to the target image — If a user moves the detail
rectangle in the Overview tool, the portion of the target image visible in
the scroll panel is updated.

The modular tools accomplish this interactivity by using callback
properties of the graphics objects. For example, the figure object supports a
WindowButtonMotionFcn callback that executes whenever the mouse button
is depressed.

Using Modular Tool APIs

Many of the modular tools support an application programmer interface
(API). This API is a set of functions that let you get information about the tool
as it operates and set up callbacks to get notification of events.

For example, the Magnification box supports a single API function:
setMagnification. You can use this API function to set the magnification
value displayed in the Magnification box. The Magnification box automatically
notifies the scroll panel to change the magnification of the image based on the
value. The scroll panel also supports an extensive set of API functions. To get
information about these APIs, see the reference page for the modular tool.

Example: Building an Image Comparison Tool

To illustrate how to use callbacks to make the connections required for
interactions between tools, this example uses the Scroll Panel API to build a
simple image comparison GUI. This custom tool displays two images side by
side in scroll panels that are synchronized in location and magnification. The
custom tool also includes an Overview tool and a Magnification box.

function my_image_compare_tool(left_image, right_image)

% Create the figure

hFig = figure('Toolbar', 'none',...
‘Menubar', 'none', ...
‘Name', 'My Image Compare Tool',...
‘NumberTitle','off',...
‘IntegerHandle', 'off"');
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% Display left image
subplot(121)
hImL = imshow(left_image);

% Display right image
subplot(122)
hImR = imshow(right_image);

% Create a scroll panel for left image

hSpL = imscrollpanel(hFig,hImL);

set (hSpL, 'Units', 'normalized’,...
'Position',[0 0.1 .5 0.9])

% Create scroll panel for right image

hSpR = imscrollpanel(hFig,hImR);

set(hSpR, 'Units', 'normalized’,...
'Position',[0.5 0.1 .5 0.9])

% Add a Magnification box

hMagBox = immagbox (hFig,hImL);

pos = get(hMagBox, 'Position');

set(hMagBox, 'Position',[0 O pos(3) pos(4)])

%% Add an Overview tool
imoverview(hImL)

%% Get APIs from the scroll panels
= iptgetapi(hSpL);
iptgetapi(hSpR);

[
T T
'—l. '—l.
D
1

%% Synchronize left and right scroll panels
apiL.setMagnification(apiR.getMagnification())
apilL.setVisiblelLocation(apiR.getVisiblelLocation())

% When magnification changes on left scroll panel,
% tell right scroll panel
apiL.addNewMagnificationCallback(apiR.setMagnification);

% When magnification changes on right scroll panel,
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% tell left scroll panel
apiR.addNewMagnificationCallback(apiL.setMagnification);

% When location changes on left scroll panel,
% tell right scroll panel
apilL.addNewLocationCallback(apiR.setVisiblelLocation);

% When location changes on right scroll panel,
% tell left scroll panel
apiR.addNewLocationCallback(apiL.setVisiblelLocation);

The tool sets up a complex interaction between the scroll panels with just

a few calls to Scroll Panel API functions. In the code, the tool specifies

a callback function to execute every time the magnification changes. The
function specified is the setMagnification API function of the other scroll
panel. Thus, whenever the magnification changes in one of the scroll panels,
the other scroll panel changes its magnification to match. The tool sets up a
similar connection for position changes.

The following figure is a sequence diagram that shows the interaction

between the two scroll panels set up by the comparison tool for both changes
in magnification and location.
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Right Scroll Panel
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Scroll Panel Connections in Custom Image Comparison Tool

To use the image comparison tool, pass it two images as arguments.

left_image = imread('peppers.png');

right_image = edge(left_image(:,:,1),'canny');
my_image_compare_tool(left_image,right_image);
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The tool opens a figure window, displaying the two images side by side, in
separate scroll panels. The custom compare tool also includes an Overview
tool and a Magnification box. When you move the detail rectangle in the
Overview tool or change the magnification in one image, both images respond.

<) My Image Compare Tool ;lglll
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Custom Image Comparison Tool with Synchronized Scroll Panels
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Creating Your Own Modular Tools

Because the toolbox uses an open architecture for the modular interactive
tools, you can extend the toolbox by creating your own modular interactive
tools, using standard Handle Graphics concepts and techniques. To help you
create tools that integrate well with the existing modular interactive tools, the
toolbox includes many utility functions that perform commonly needed tasks.

The utility functions can help check the input arguments to your tool, add
callback functions to a callback list or remove them from a list, draw a
draggable point, line, or rectangle over an image, and align figure windows
in relation to a fixed window. The following table lists these utility functions
in alphabetical order. See the function’s reference page for more detailed

information.

Utility Function Description

getimagemodel Retrieve image model objects from image handles

getrangefromclass Get default display range of image, based on its
class

imagemodel Access to properties of an image relevant to its
display

imattributes Return information about image attributes

imgca Get handle to most recent current axis containing
an image

imgcf Get handle to most recent current figure
containing an image

imgetfile Display Open Image dialog box

imhandles Get all image handles

imline Create a line that can be dragged and resized
interactively

impoint Create a point that can be dragged interactively

imrect Create a rectangle that can be dragged
interactively

iptaddcallback Add function handle to a callback list
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Utility Function

Description

iptcheckconn Check validity of connectivity argument
iptcheckhandle Check validity of image handle argument
iptcheckinput Check validity of input argument

iptcheckmap Check validity of colormap argument
iptchecknargin Check number of input arguments
iptcheckstrs Check validity of string argument

iptgetapi Get application programmer interface (API) for

a handle

iptGetPointerBehavior

Retrieve pointer behavior from HG object

ipticondir Return names of directories containing IPT and
MATLAB icons

iptnum2ordinal Convert positive integer to ordinal string

iptPointerManager Install mouse pointer manager in figure

iptremovecallback Delete function handle from callback list

iptSetPointerBehavior

Store pointer behavior in HG object

iptwindowalign

Align figure windows




Spatial Transformations

This chapter describes the spatial transformation functions in the Image
Processing Toolbox. A spatial transformation (also known as a geometric
operation) modifies the spatial relationship between pixels in an image,
mapping pixel locations in an input image to new locations in an output
image. The toolbox includes functions that perform certain specialized spatial
transformations, such as resizing and rotating an image. In addition, the
toolbox includes functions that you can use to perform many types of 2-D and
N-D spatial transformations, including custom transformations.

Interpolation (p. 6-3)

Resizing an Image (p. 6-5)

Rotating an Image (p. 6-8)

Cropping an Image (p. 6-10)

Performing General 2-D Spatial
Transformations (p. 6-11)

Provides background information
about spatial transformations and
interpolation

Describes how to use the imresize
function to change the size of an
image

Describes how to use the imrotate
function to rotate an image

Describes how to use the imcrop
function to extract a rectangular
portion of an image

Describes how to perform a general
spatial transformation of a 2-D
image
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Performing N-Dimensional Spatial
Transformations (p. 6-23)

Example: Performing Image
Registration (p. 6-25)

Describes the toolbox functions you
can use to perform N-D spatial
transformations of arrays

Shows how to use some capabilities
of imtransform to view the results of
image registration



Interpolation

Interpolation

Interpolation is the process used to estimate an image value at a location

in between image pixels. For example, if you resize an image so it contains
more pixels than it did originally, the toolbox uses interpolation to determine
the values for the additional pixels. The imresize and imrotate geometric
functions use two-dimensional interpolation as part of the operations they
perform. The improfile image analysis function also uses interpolation.
See “Getting the Intensity Profile of an Image” on page 11-3 for information
about this function.

Interpolation Methods

The Image Processing Toolbox provides three interpolation methods:

¢ Nearest-neighbor interpolation
¢ Bilinear interpolation

¢ Bicubic interpolation

The interpolation methods all work in a fundamentally similar way. In each
case, to determine the value for an interpolated pixel, they find the point in
the input image that the output pixel corresponds to. They then assign a
value to the output pixel by computing a weighted average of some set of
pixels in the vicinity of the point. The weightings are based on the distance
each pixel is from the point.

The methods differ in the set of pixels that are considered:
¢ For nearest-neighbor interpolation, the output pixel is assigned the value

of the pixel that the point falls within. No other pixels are considered.

¢ For bilinear interpolation, the output pixel value is a weighted average of
pixels in the nearest 2-by-2 neighborhood.

¢ For bicubic interpolation, the output pixel value is a weighted average of
pixels in the nearest 4-by-4 neighborhood.
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The number of pixels considered affects the complexity of the computation.
Therefore the bilinear method takes longer than nearest-neighbor
interpolation, and the bicubic method takes longer than bilinear. However,
the greater the number of pixels considered, the more accurate the effect is, so
there is a trade-off between processing time and quality.

Interpolation and Image Types

You can use all three types of interpolation with grayscale, truecolor, or binary
images; however, bilinear or bicubic are recommended. Nearest-neighbor is
the only type of interpolation that can be used with indexed images.



Resizing an Image

Resizing an Image

To change the size of an image, use the imresize function. Using imresize,
you can

® Specify the size of the output image

® Specify the interpolation method used

® Specify the filter to use to prevent aliasing

Specifying the Size of the Output Image

Using imresize, you can specify the size of the output image in two ways:

® By specifying the magnification factor to be used on the image

® By specifying the dimensions of the output image

Using the Magnification Factor

To enlarge an image, specify a magnification factor greater than 1. To reduce
an image, specify a magnification factor between 0 and 1. For example, the
command below increases the size of an image by 1.25 times.

I = imread('circuit.tif');
J = imresize(I,1.25);
imshow(I)

figure, imshow(J)
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Image Courtesy of Steve Decker and Shujoat Nadeem

Specifying the Size of the Output Image

You can specify the size of the output image by passing a vector that contains
the number of rows and columns in the output image. If the specified size
does not produce the same aspect ratio as the input image, the output image
will be distorted.

The following command creates an output image with 100 rows and 150
columns.

I = imread('circuit.tif');
J = imresize(I,[100 150]);
imshow(I)

figure, imshow(dJ)

Specifying the Interpolation Method

By default, imresize uses nearest-neighbor interpolation to determine the
values of pixels in the output image, but you can specify other interpolation
methods. This table lists the supported interpolation methods in order of
complexity. See “Interpolation” on page 6-3 for more information about these
methods.



Resizing an Image

Argument Value Interpolation Method

'nearest' Nearest-neighbor interpolation (the default)
'bilinear' Bilinear interpolation

'bicubic' Bicubic interpolation

In this example, imresize uses the bilinear interpolation method.

Y = imresize(X,[100 150], 'bilinear')

Using Filters to Prevent Aliasing

When you reduce the size of an image, you lose some of the original pixels
because there are fewer pixels in the output image. Aliasing that occurs as a
result of size reduction normally appears as “stair-step” patterns (especially in
high-contrast images), or as moiré (ripple-effect) patterns in the output image.

When you specify either bilinear or bicubic as the interpolation method,
imresize automatically applies a lowpass filter to the image before
interpolation to limit the impact of aliasing on the output image.

Note Even with lowpass filtering, resizing an image can introduce artifacts,
because information is always lost when you reduce the size of an image.

The imresize function does not apply a lowpass filter if nearest-neighbor
interpolation is used. Nearest-neighbor interpolation is primarily used for
indexed images, and lowpass filtering is not appropriate for these images.

When using imresize to reduce the size of an image, you can specify the size
of the lowpass filter or specify a filter of your own creation. For example, the
following code specifies a 9-by-9 filter. (The default size is 11-by-11.) If you
specify the value 0 (zero), imresize does not perform lowpass filtering.

J = imresize(I,'bilinear',9);

For more information about specifying a filter, see the reference page for
imresize.
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Rotating an Image

6-8

To rotate an image, use the imrotate function. imrotate accepts two primary
arguments:

¢ The image to be rotated

¢ The rotation angle

You specify the rotation angle in degrees. If you specify a positive value,
imrotate rotates the image counterclockwise; if you specify a negative value,
imrotate rotates the image clockwise. This example rotates the image I 35
degrees in the counterclockwise direction.

J = imrotate(I,35);
As optional arguments to imrotate, you can also specify

¢ The size of the output image

® The interpolation method

Specifying the Size of the Output Image

By default, imrotate creates an output image large enough to include the
entire original image. Pixels that fall outside the boundaries of the original
image are set to 0 and appear as a black background in the output image. If
you specify the text string "crop' as an argument, imrotate crops the output
image to be the same size as the input image. (See the reference page for
imrotate for an example of cropping.)

Specifying the Interpolation Method

By default, imrotate uses nearest-neighbor interpolation to determine the
value of pixels in the output image, but you can specify other interpolation
methods. This table lists the supported interpolation methods in order of
complexity. See “Interpolation” on page 6-3 for more information about these
methods.



Rotating an Image

Argument

Value Interpolation Method

'nearest' Nearest-neighbor interpolation (the default)
'bilinear' Bilinear interpolation

'bicubic' Bicubic interpolation

For example, these commands rotate an image 35° counterclockwise and use
bilinear interpolation.

I imread('circuit.tif');

J = imrotate(I,35, 'bilinear');
imshow(I)
figure, imshow(J)
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Cropping an Image
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To extract a rectangular portion of an image, use the imcrop function. imcrop
accepts two primary arguments:

® The image to be cropped

® The coordinates of a rectangle that defines the crop area

If you call imcrop without specifying the crop rectangle, you can specify the
crop rectangle interactively. In this case, the cursor changes to crosshairs
when it is over the image. Position the crosshairs over a corner of the
crop region and press and hold the left mouse button. When you drag the
crosshairs over the image you specify the rectangular crop region. imcrop
draws a rectangle around the area you are selecting. When you release the
mouse button, imcrop creates a new image from the selected region.

In this example, you display an image and call imcrop. The imcrop function
displays the image in a figure window and waits for you to draw the cropping
rectangle on the image. In the figure, the rectangle you select is shown in red.
The example then calls imshow to view the cropped image.

imshow circuit.tif
I = imcrop;
imshow(I);
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Performing General 2-D Spatial Transformations

This section describes two toolbox functions that you can use to perform
general 2-D spatial transformations. (For information about performing
transformations of arrays of higher dimension, see “Performing N-Dimensional
Spatial Transformations” on page 6-23.)

® maketform

e imtransform

You use the maketform function to define the 2-D spatial transformation you
want to perform. maketform creates a MATLAB structure called a TFORM
that contains all the parameters required to perform the transformation.
You can define many types of spatial transformations in a TFORM, including
affine transformations, such as translation, scaling, rotation, and shearing,
projective transformations, and custom transformations. For more
information, see “Creating TFORM Structures” on page 6-19. (You can

also create a TFORM using the cp2tform function — see Chapter 7, “Image
Registration”)

After you create the TFORM, you use the imtransform function to perform the
transformation, passing imtransform the image to be transformed and the
TFORM structure. The following figure illustrates this process. The next section
provides an example that illustrates each step — see “Example: Performing a
Translation” on page 6-12.

Input Spafial transtarmatian structure
Image [TFORM), creaed using
maketform{arcp2tform)

¥ ¥

imtransform

!

Transfarmed
image

Overview of General 2-D Spatial Transformation Process
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Example: Performing a Translation

This example illustrates how to use the maketform and imtransform
functions to perform a 2-D spatial transformation of an image. The example
performs a simple affine transformation called a translation. In a translation,
you shift an image in coordinate space by adding a specified value to the x-
and y-coordinates. The example illustrates the following steps:

e “Step 1: Import the Image to Be Transformed” on page 6-12
e “Step 2: Define the Spatial Transformation” on page 6-12

e “Step 3: Create the TFORM Structure” on page 6-13

e “Step 4: Perform the Transformation” on page 6-13

e “Step 5: View the Output Image” on page 6-15

Step 1: Import the Image to Be Transformed

Bring the image to be transformed into the MATLAB workspace. This
example creates a checkerboard image, using the checkerboard function. By
default, checkerboard creates an 80-by-80 pixel image.

cb = checkerboard;
imshow(cb)

Original Image

Step 2: Define the Spatial Transformation

You must define the spatial transformation that you want to perform. For
many types of 2-D spatial transformations, such as affine transformations,
you can use a 3-by-3 transformation matrix to specify the transformation.
You can also use sets of points in the input and output images to specify the
transformation and let maketform create the transformation matrix. For more
information, see “Defining the Transformation Data” on page 6-17.
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This example uses the following transformation matrix to define a spatial
transformation called a translation.

xform = [

- O

1
0
0

- O O

40 4

o

In this matrix, xform(3,1) specifies the number of pixels to shift the image
in the horizontal direction and xform(3,2) specifies the number of pixels to
shift the image in the vertical direction.

Step 3: Create the TFORM Structure

You use the maketform function to create a TFORM structure. As arguments,
you specify the type of transformation you want to perform and the
transformation matrix (or set of points) that you created to define the
transformation. For more information, see “Creating TFORM Structures”
on page 6-19.

This example calls maketform, specifying 'affine' as the type of
transformation, because translation is a type of affine transformation, and
xform, the transformation matrix created in step 2.

tform_translate = maketform('affine',xform);

Step 4: Perform the Transformation

To perform the transformation, call the imtransform function, specifying
the image you want to transform and the TFORM structure that stores all the
required transformation parameters. For more information, see “Performing
the Spatial Transformation” on page 6-20.

The following example passes to the imtransform function the checkerboard
image, created in Step 1, and the TFORM structure created in Step 3.

imtransform returns the transformed image.

[cb_trans xdata ydata]= imtransform(cb, tform_translate);

The example includes two optional output arguments: xdata and ydata.
These arguments return the location of the output image in output coordinate
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space. xdata contains the x-coordinates of the pixels at the corners of the
output image. ydata contains the y-coordinates of these same pixels.

Note This section uses the spatial coordinate system when referring to pixel
locations. In the spatial coordinates system, the x- and y-coordinates specify
the center of the pixel. For more information about the distinction between
spatial coordinates and pixel coordinates, see “Coordinate Systems” on page
2-2,

The following figure illustrates this translation graphically. By convention,
the axes in input space are labeled © and v and the axes in output space are
labelled x and y. In the figure, note how imtransform modifies the spatial
coordinates that define the locations of pixels in the input image. The pixel
at (1,1) is now positioned at (41,41). (In the checkerboard image, each black,
white, and gray square is 10 pixels high and 10 pixels wide.)

Input Gordinate S pace Dutput (oordinate Space

[nn

[ ETATT

Input Image Translated
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Pixel Values and Pixel Locations. The previous figure shows how
imtransform changes the locations of pixels between input space and output
space. The pixel located at (1,1) in the input image is now located at (41,41)
in the output image. Note, however, that the value at that pixel location has
not changed. Pixel (1,1) in the input image is black and so is pixel (41,41)
in the output image.

imtransform determines the value of pixels in the output image by mapping
the new locations back to the corresponding locations in the input image
(inverse mapping). In a translation, because the size and orientation of the
output image is the same as the input image, this is a one to one mapping

of pixel values to new locations. For other types of transformations, such

as scaling or rotation, imtransform interpolates within the input image to
compute the output pixel value. For more information about the interpolation
methods used by imtransform, see “Interpolation” on page 6-3.

Step 5: View the Output Image

After performing the transformation, you might want to view the transformed
image. The example uses the imshow function to display the transformed
image.

figure, imshow(cb_trans)

Translated Image

Understanding the Display of the Transformed Image. When viewing
the transformed image, especially for a translation operation, it might appear
that the transformation had no effect. The transformed image looks identical
to the original image. However, if you check the xdata and ydata values
returned by imtransform, you can see that the spatial coordinates have
changed. The upper left corner of the input image with spatial coordinates
(1,1) is now (41,41). The lower right corner of the input image with spatial
coordinates (80,80) is now (120,120). The value 40 has been added to each,
as expected.
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xdata =

41 120
ydata =

41 120

The reason that no change is apparent in the visualization is because
imtransform sizes the output image to be just large enough to contain the
entire transformed image but not the entire output coordinate space. To see
the effect of the translation in relation to the original image, you can use
several optional input parameters that specify the size of output image and
how much of the output space is included in the output image.

The example uses two of these optional input parameters, XData and YData,
to specify how much of the output coordinate space to include in the output
image. The example sets the XData and YData to include the origin of the
original image and be large enough to contain the entire translated image.

Note All the pixels that are now in the output image that do not correspond
to locations in the input image are black. imtransform assigns a value, called
a fill value, to these pixels. This example uses the default fill value but you
can specify a different one — see “Specifying Fill Values” on page 6-21.

cb_trans2 = imtransform(cb, tform_translate,...
‘XData',[1 (size(cb,2)+xform(3,1)],...
'YData', [1 (size(cb,1)+xform(3,2)]);
figure, imshow(cb_trans2)
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View of the Translated Image in Relation to Original Coordinate Space

Defining the Transformation Data

Before you can perform a spatial transformation, you must first define the
parameters of the transformation. The following sections describe two ways
you can define a spatial transformation.

® “Using a Transformation Matrix” on page 6-17

® “Using Sets of Points” on page 6-18

With either method, you pass the result to the maketform function to create
the TFORM structure required by imtransform.

Using a Transformation Matrix

The maketform function can accept transformation matrices of various
sizes for N-D transformations. Because imtransform only performs 2-D
transformations, you can only specify 3-by-3 transformation matrices.

For example, you can use a 3-by-3 matrix to specify any of the affine
transformations. For affine transformations, the last column must contain
00 1([zeros(N,1); 11). You can specify a 3-by-2 matrix. In this case,
imtransform automatically adds this third column.

The following table lists the affine transformations you can perform with

imtransform along with the transformation matrix used to define them. You
can combine multiple affine transformations into a single matrix.
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Affine
Transform Example | Transformation Matrix
Translation KR t_ specifies the
displacement along
e 1.0 the x axis
_t"‘ Ty 1 t, specifies the
displacement along
the y axis.
Scale _Sx 0 0 s specifies the scale
factor along the x axis
0 s, 0 .
s specifies the scale
_U 01 factor along the y axis.
Shear 1 sh. 0 sh_specifies the shear
o factor along the x axis
sh, 1 0 .
sh,_ specifies the shear
_U 0 1 factor along the y axis.
Rotation /A\ [cos (q) sinfq) 0 g specifies the angle
{\ ’,} _ of rotation.
v -s1nf{qg) cos(q) O
0 4] 1

Using Sets of Points

Instead of specifying a transformation matrix, you optionally use sets of points
to specify a transformation and let maketform infer the transformation matrix.

To do this for an affine transformation, you must pick three non-collinear
points in the input image and in the output image. (The points form a
triangle.) For a projective transformation, you must pick four points. (The
points form a quadrilateral.)

This example picks three points in the input image and three points in the

output image created by the translation performed in “Example: Performing a
Translation” on page 6-12. The example passes these points to maketform and
lets maketform infer the transformation matrix. The three points mark three
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corners of one of the checkerboard squares in the input image and the same
square in the output image.

in_points = [11 11;21 11; 21 21]
out_points = [51 51;61 51;61 61]

tform2 = maketform('affine',inpts,outpts)

Creating TFORM Structures

After defining the transformation data (“Defining the Transformation
Data” on page 6-17), you must create a TFORM structure to specify the
spatial transformation. You use the maketform function to create a TFORM
structure. You pass the TFORM structure to the imtransform to perform the
transformation. (You can also create a TFORM using the cp2tform function.
For more information, see Chapter 7, “Image Registration”.)

The example creates a TFORM structure that specifies the parameters
necessary for the translation operation.

tform_translate = maketform('affine',xform)

To create a TFORM you must specify the type of transformation you want to
perform and pass in the transformation data. The example specifies 'affine’
as the transformation type because translation is an affine transformation but
maketform also supports projective transformations. In addition, by using the
custom and composite options you can specify a virtually limitless variety

of spatial transformations to be used with imtransform. The following table
lists the transformation types supported by maketform.
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Transformation

Type Description

‘affine’ Transformation that can include translation, rotation,
scaling, and shearing. Straight lines remain straight,
and parallel lines remain parallel, but rectangles might
become parallelograms.

'projective’ Transformation in which straight lines remain straight
but parallel lines converge toward vanishing points.
(The vanishing points can fall inside or outside the
image -- even at infinity.)

"box' Special case of an affine transformation where each
dimension is shifted and scaled independently.

'custom' User-defined transformation, providing the
forward and/or inverse functions that are called by
imtransform.

'composite’ Composition of two or more transformations.

Performing the Spatial Transformation

Once you specify the transformation in a TFORM struct, you can perform the
transformation by calling imtransform. The imtransform function performs
the specified transformation on the coordinates of the input image and creates
an output image.

The translation example called imtransform to perform the transformation,
passing it the image to be transformed and the TFORM structure. imtransform
returns the transformed image.

cb_trans = imtransform(cb, tform_translate);

imtransform supports several optional input parameters that you can use
to control various aspects of the transformation so as the size of the output
image and the fill value used. To see an example of using the XData and
YData input parameters, see “Example: Performing Image Registration” on
page 6-25. For more information about specifying fill values, see “Specifying
Fill Values” on page 6-21.
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Specifying Fill Values

When you perform a transformation, there are often pixels in the output
image that are not part of the original input image. These pixels must

be assigned some value, called a fill value. By default, imtransform sets
these pixels to zero and they are displayed as black. Using the FillValues
parameter with the imtransform function, you can specify a different color.

Grayscale Images. If the image being transformed is a grayscale image,
you must specify a scalar value that specifies a shade of gray.

For example, in “Step 5: View the Output Image” on page 6-15, where the
example displays the translated checkerboard image in relation to the original
coordinate space, you can specify a fill value that matches the color of the gray
squares, rather than the default black color.

cb_fill = imtransform(cb, tform_translate,...
'XData', [1 (size(cb,2)+xform(3,1))],
'YData', [1 (size(cb,1)+xform(3,2))]
'Fillvalues', .7 );

figure, imshow(cb_fill)

bl

Translated Image with Gray Fill Value

RGB Images. If the image being transformed is an RGB image, you can use
either a scalar value or a 1-by-3 vector. If you specify a scalar, imtransform
uses that shade of gray for each plane of the RGB image. If you specify a
1-by-3 vector, imtransform interprets the values as an RGB color value.

For example, this code translates an RGB image, specifying an RGB color

value as the fill value. The example specifies one of the light green values in
the image as the fill value.

6-21



6 Spatial Transformations

6-22

rgb = imread('onion.png');
xform = [ 100

010

40 40 1 ]

tform_translate = maketform('affine',xform);

cb_rgb = imtransform(rgb, tform_translate,...
'XData', [1 (size(rgb,2)+xform(3,1))1,...
'YData', [1 (size(rgb,1)+xform(3,2))],...
'FillValues', [187;192;57]);

figure, imshow(cb_rgb)

Translated RGB Image with Color Fill Value

If you are transforming multiple RGB images, you can specify different fill
values for each RGB image. For example, if you want to transform a series of
10 RGB images, a 4-D array with dimensions 200-by-200-by-3-by-10, you have
several options. You can specify a single scalar value and use a grayscale fill
value for each RGB image. You can also specify a 1-by-3 vector to use a single
color value for all the RGB images in the series. To use a different color fill
value for each RGB image in the series, specify a 3-by-10 array containing
RGB color values.
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Performing N-Dimensional Spatial Transformations

The following functions, when used in combination, provide a vast array
of options for defining and working with 2-D, N-D, and mixed-D spatial
transformations:

®* maketform

e fliptform

e tformfwd

e tforminv

e findbounds

® makeresampler
e tformarray

e imtransform

The imtransform, findbounds, and tformarray functions use the tformfwd
and tforminv functions internally to encapsulate the forward transformations
needed to determine the extent of an output image or array and/or to map the
output pixels/array locations back to input locations. You can use tformfwd
and tforminv to explore the geometric effects of a transformation by applying
them to points and lines and plotting the results. They support a consistent
handling of both image and pointwise data.

The following example, “Performing the Spatial Transformation” on page
6-20, uses the makeresampler function with a standard interpolation method.
You can also use it to obtain special effects or custom processing. For example,
you could specify your own separable filtering/interpolation kernel, build a
custom resampler around the MATLAB interp2 or interp3 functions, or
even implement an advanced antialiasing technique.

And, as noted, you can use tformarray to work with arbitrary-dimensional
array transformations. The arrays do not even need to have the same
dimensions. The output can have either a lower or higher number of
dimensions than the input.
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For example, if you are sampling 3-D data on a 2-D slice or manifold, the
input array might have a lower dimensionality. The output dimensionality
might be higher, for example, if you combine multiple 2-D transformations
into a single 2-D to 3-D operation.

For example, this code uses imtransform to perform a projective
transformation of a checkerboard image.

I = checkerboard(20,1,1);

figure; imshow(I)

T = maketform('projective',[1 1; 41 1; 41 41; 141],...
[5 5; 40 5; 35 30; -10 30]);

R makeresampler('cubic', 'circular');

K imtransform(I T,R,'Size',[100 100], 'XYScale',1);

figure, imshow(K

.

Original Transformed
image image

The imtransform function options let you control many aspects of the
transformation. For example, note how the transformed image appears

to contain multiple copies of the original image. This is accomplished

by using the 'Size' option, to make the output image larger than the
input image, and then specifying a padding method that extends the input
image by repeating the pixels in a circular pattern. The Image Processing
Toolbox Image Transformation demos provide more examples of using the
imtransform function and related functions to perform different types of
spatial transformations.
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Example: Performing Image Registration

This example is intended to clarify the spatial relationship between the output
image and the base image in image registration. The example illustrates

use of the optional 'XData' and 'YData' input parameters and the optional
xdata and ydata output values.

Step 1: Read in Base and Unregistered Images

Read the base and unregistered images from sample data files that come
with the Image Processing Toolbox.

base = imread('westconcordorthophoto.png');
unregistered = imread('westconcordaerial.png');

Step 2: Display the Unregistered Image

Display the unregistered image.

iptsetpref ('ImshowAxesVisible', 'on')

imshow(unregistered)

text(size(unregistered,2),size(unregistered,1)+30,
'Image courtesy of mPower3/Emerge’,
'FontSize',7,'HorizontalAlignment', 'right');
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Image courtesy of mPower?/Bmenge

Step 3: Create a TFORM Structure

Create a TFORM structure using preselected control points. Start by loading a
MAT-file that contains preselected control points for the base and unregistered
images.

load westconcordpoints
tform = cp2tform(input_points, base_points, 'projective');

Step 4: Transform the Unregistered Image

Use imtransform to perform the transformations necessary to register

the unregistered image with the base image. This code uses the optional
FillValues input parameter to specify a fill value (white). This fill value helps
when the example overlays the transformed image, registered, on the base
image to check the registration in a later step.

registered = imtransform(unregistered, tform,...
'FillValues', 255);
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Step 5: Overlay Registered Image Over Base Image

Overlay a semitransparent version of the registered image over the base
image. Notice how the two images appear misregistered because the example
assumes that the images are in the same spatial coordinate system. The next
steps provide two ways to remedy this display problem.

figure; imshow(registered);
hold on

h = imshow(base, gray(256));
set(h, 'AlphaData', 0.6)

&0 100 180 200 250 300 350 400

Registered Image with Base Image Overlay
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Step 6: Using XData and YData Input Parameters

One way to ensure that the registered image appears registered with the
base image is to truncate the registered image by discarding any areas that
would extrapolate beyond the extent of the base image. You use the 'XData
and 'YData' parameters to do this.

registered1 = imtransform(unregistered,tform,...
‘Fillvalues', 255,...
'XData', [1 size(base,2)],...
'YData', [1 size(base,1)]);

Display the registered image, overlaying a semitransparent version of the
base image for comparison. The registration is evident, but part of the
unregistered image has been discarded. The next step provides another
solution in which the entire registered image is visible.

figure; imshow(registeredi)
hold on

h = imshow(base, gray(256));
set(h, 'AlphaData', 0.6)

a0 100 180 200 2580 300 340

Registered Image Truncated with Base Image Overlay
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Step 7: Using XData and YData Output Values

Another approach is to compute the full extent of the registered image and
use the optional imtransform syntax that returns the x- and y-coordinates
that indicate the transformed image’s position relative to the base image’s
pixel coordinates.

[registered2 xdata ydata] = imtransform(unregistered, tform,...
'FillValues', 255);

Display the registered image. Overlay a semi-transparent version of the base
image for comparison. Adjust the axes to include the full base image. In this
case, notice how the registration is evident and the full extent of both images
is visible as well.

figure; imshow(registered2, 'XData', xdata, 'YData', ydata)
hold on

h = imshow(base, gray(256));

set(h, 'AlphaData', 0.6)

ylim = get(gca, 'YLim');

set(gca, 'YLim', [0.5 ylim(2)])

a0 100 150 200 250 300 380 400
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Image Registration

This chapter describes the image registration capabilities of the Image
Processing Toolbox. Image registration is the process of aligning two or more
images of the same scene. Image registration is often used as a preliminary
step in other image processing applications.

Registering an Image (p. 7-2) Steps you through an example of the
image registration process

Types of Supported Transformations Lists the types of supported
(p. 7-11) transformations

Selecting Control Points (p. 7-13) Describes how to use the Control
Point Selection Tool (cpselect) to
select control points in pairs of

images
Using Correlation to Improve Describes how to use the cpcorr
Control Points (p. 7-30) function to fine-tune your control

point selections
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Registering an Image

Image registration is the process of aligning two or more images of the
same scene. Typically, one image, called the base image or reference image,
is considered the reference to which the other images, called input images,
are compared. The object of image registration is to bring the input image
into alignment with the base image by applying a spatial transformation to
the input image. The differences between the input image and the output
image might have occurred as a result of terrain relief and other changes in
perspective when imaging the same scene from different viewpoints. Lens
and other internal sensor distortions, or differences between sensors and
sensor types, can also cause distortion.

A spatial transformation maps locations in one image to new locations in
another image. (For more details, see Chapter 6, “Spatial Transformations”)
Determining the parameters of the spatial transformation needed to bring the
images into alignment is key to the image registration process.

Image registration is often used as a preliminary step in other image
processing applications. For example, you can use image registration to align
satellite images of the earth’s surface or images created by different medical
diagnostic modalities (MRI and SPECT). After registration, you can compare
features in the images to see how a river has migrated, how an area is flooded,
or to see if a tumor is visible in an MRI or SPECT image.

Point Mapping

The Image Processing Toolbox provides tools to support point mapping to
determine the parameters of the transformation required to bring an image
into alignment with another image. In point mapping, you pick points in a
pair of images that identify the same feature or landmark in the images.
Then, a spatial mapping is inferred from the positions of these control points.

Note You might need to perform several iterations of this process,
experimenting with different types of transformations, before you achieve a
satisfactory result. In some cases, you might perform successive registrations,
removing gross global distortions first, and then removing smaller local
distortions in subsequent passes.
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The following figure provides a graphic illustration of this process. This
process is best understood by looking at an example. See “Example:

Registering to a Digital Orthophoto” on page 7-4 for an extended example.
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Example: Registering to a Digital Orthophoto

This example illustrates the steps involved in performing image registration
using point mapping. These steps include:

1 Read the images into the MATLAB workspace.
2 Specify control point pairs n the images.
3 Save the control point pairs.

4 Fine-tune the control points using cross-correlation. (This is an optional
step.)

5 Specify the type of transformation to be used and infer its parameters from
the control point pairs.

6 Transform the unregistered image to bring it into alignment.

To illustrate this process, the example registers a digital aerial photograph to
a digital orthophoto covering the same area. Both images are centered on the
business district of West Concord, Massachusetts.

The aerial image is geometrically uncorrected: it includes camera perspective,
terrain and building relief, and internal (lens) distortions, and it does not have
any particular alignment or registration with respect to the earth.

The orthophoto, supplied by the Massachusetts Geographic Information
System (MassGIS), has been orthorectified to remove camera, perspective,
and relief distortions (via a specialized image transformation process). It
is also georegistered (and geocoded)--the columns and rows of the digital
orthophoto image are aligned to the axes of the Massachusetts State Plane
coordinate system, each pixel center corresponds to a definite geographic
location, and every pixel is 1 meter square in map units.
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Step 1: Read the Images into MATLAB

In this example, the base image is westconcordorthophoto.png, the
MassGIS georegistered orthophoto. It is a panchromatic (grayscale) image.
The image to be registered is westconcordaerial.png, a digital aerial
photograph supplied by mPower3/Emerge, and is a visible-color RGB image.

orthophoto = imread('westconcordorthophoto.png');
figure, imshow(orthophoto)

unregistered = imread('westconcordaerial.png');
figure, imshow(unregistered)

You do not have to read the images into the MATLAB workspace. The
cpselect function accepts file specifications for grayscale images. However,
if you want to use cross-correlation to tune your control point positioning,
the images must be in the workspace.

Image (aurtesy of mPawerd/Emerge Image (aurtesy of MassGIS

Aerial Photo Image Orthophoto Image
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Step 2: Choose Control Points in the Images

The toolbox provides an interactive tool, called the Control Point Selection
Tool, that you can use to pick pairs of corresponding control points in both
images. Control points are landmarks that you can find in both images, like a
road intersection, or a natural feature.

To start this tool, enter cpselect at the MATLAB prompt, specifying as
arguments the input and base images.

Note The unregistered image is an RGB image. Because the Control Point
Selection Tool only accepts grayscale images, the example passes only one
plane of the color image to cpselect.

cpselect(unregistered(:,:,1),orthophoto)

The cpselect function displays two views of both the input image and the base
image in which you can pick control points by pointing and clicking. For more
information, see “Selecting Control Points” on page 7-13. This figure shows
the Control Point Selection Tool with four pairs of control points selected. The
number of control point pairs you pick is at least partially determined by the
type of transformation you want to perform (specified in Step 5). See “Types of
Supported Transformations” on page 7-11 for information about the minimum
number of points required by each transformation.



Registering an Image

<} Control Point Selection Tool =] E3
File Edit “iew Help

r[o oo |a|a || |

Input Detail: f100% = Lackratia_|[100% B Base Detail: arthophoto
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=

Step 3: Save the Control Point Pairs to the MATLAB Workspace

In the Control Point Selection Tool, click the File menu and choose the Save
Points to Workspace option. See “Saving Control Points” on page 7-28 for
more information.
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For example, the Control Point Selection Tool returns the following set of
control points in the input image. These values represent spatial coordinates;
the left column are x-coordinates, the right column are y-coordinates.

input_points =
120.7086 93.9772
319.2222 78.9202
127.9838 291.6312
352.0729 281.1445

Step 4: Fine-Tune the Control Point Pair Placement

This is an optional step that uses cross-correlation to adjust the position of the
control points you selected with cpselect. See “Using Correlation to Improve
Control Points” on page 7-30 for more information.

Note cpcorr can only adjust points for images that are the same scale and
have the same orientation. Because the Concord image is rotated in relation
to the base image, cpcorr cannot tune the control points. When it cannot tune
the points, cpcorr returns the input points unmodified.

input_points_corr = cpcorr(input_points,base_points,...
unregistered(:,:,1),orthophoto)
input_points_corr =
120.7086 93.9772
319.2222 78.9202
127.1046 289.8935
352.0729 281.1445

Step 5: Specify the Type of Transformation and Infer Its
Parameters

In this step, you pass the control points to the cp2tform function that
determines the parameters of the transformation needed to bring the image
into alignment. cp2tform is a data-fitting function that determines the
transformation based on the geometric relationship of the control points.
cp2tform returns the parameters in a geometric transformation structure,
called a TFORM structure.
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When you use cp2tform, you must specify the type of transformation you
want to perform. The cp2tform function can infer the parameters for five
types of transformations. You must choose which transformation will correct
the type of distortion present in the input image. See “T'ypes of Supported
Transformations” on page 7-11 for more information. Images can contain
more than one type of distortion.

The predominant distortion in the aerial image of West Concord (the input
image) results from the camera perspective. Ignoring terrain relief, which is
minor in this area, image registration can correct for this using a projective
transformation. The projective transformation also rotates the image into
alignment with the map coordinate system underlying the base digital
orthophoto image. (Given sufficient information about the terrain and
camera, you could correct these other distortions at the same time by creating
a composite transformation with maketform. See “Performing General 2-D
Spatial Transformations” on page 6-11 for more information.)

mytform = cp2tform(input_points,base_points, 'projective’');

Step 6: Transform the Unregistered Image

As the final step in image registration, transform the input image to bring
it into alignment with the base image. You use imtransform to perform the
transformation, passing it the input image and the TFORM structure, which
defines the transformation. imtransform returns the transformed image.
For more information about using imtransform, see Chapter 6, “Spatial
Transformations”

registered = imtransform(unregistered,mytform)

Note imtransform applies the transformation defined in mytform, which is
based on control points picked in only one plane of the RGB image, to all
three planes of the input image.
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Compare the transformed image to the base image to see how the registration
came out.

Registered Image
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Types of Supported Transformations

The cp2tform function can infer the parameters for six types of
transformations. This table lists the transformations in order of complexity,
with examples of each type of distortion.

The first four transformations, 'linear conformal', 'affine’,
'projective’', and 'polynomial' are global transformations. In these
transformations, a single mathematical expression applies to an entire
image. The last two transformations, 'piecewise linear' and 'lwm' (local
weighted mean), are local transformations. In these transformations, different
mathematical expressions apply to different regions within an image.

When exploring how different transformations affect the images you are
working with, try the global transformations first. If these transformations
are not satisfactory, try the local transformations: the piecewise linear
transformation first and then the local weighted mean transformation.

Transformation
Type

‘linear conformal' | Use this transformation 2 pairs

Minimum Control
Description Points Example

when shapes in the input

image are unchanged, ::a 03.
but the image is distorted
by some combination of
translation, rotation, and
scaling. Straight lines
remain straight, and
parallel lines are still
parallel.

"affine'

Use this transformation 3 pairs
when shapes in the input \$
image exhibit shearing. & %\
Straight lines remain
straight, and parallel
lines remain parallel,
but rectangles become
parallelograms.
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Transformation Minimum Control
Type Description Points Example
'projective’ Use this transformation 4 pairs
when the scene appears & ‘33‘
tilted. Straight lines
remain straight, but
parallel lines converge
toward vanishing points
(which might or might not
fall within the image).
'polynomial'’ Use this transformation 6 pairs
when objects in the image | (order 2)
are curved. The higher the . ::a #
. 10 pairs
order of the polynomial, the (order 3)
better the fit, but the result
can contain more curves 16 pairs
than the base image. (order 4)
'piecewise linear' | Use this transformation 4 pairs
when parts of the & ::::
image appear distorted
differently.
“lwm' Use this transformation 6 pairs
(local weighted mean), (12 pairs E:: !ﬂ
when the distortion varies | recommended)

locally and piecewise linear
is not sufficient.
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Selecting Control Points

The toolbox includes an interactive tool that enables you to specify control
points in the images you want to register. The tool displays the images side by
side. When you are satisfied with the number and placement of the control
points, you can save the control points.

Using the Control Point Selection Tool

To specify control points in a pair of images you want to register, use the
Control Point Selection Tool, cpselect. The tool displays the image you want
to register, called the input image, next to the image you want to compare it
to, called the base image or reference image.

Specifying control points is a four-step process:

1 Start the tool, specifying the input image and the base image.

2 View the images, looking for visual elements that you can identify in both
images. cpselect provides many ways to navigate around the image,
panning and zooming to view areas of the image in more detail.

3 Specify matching control point pairs in the input image and the base image.

4 Save the control points in the MATLAB workspace.

The following figure shows the default appearance of the tool when you first
start it.
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Starting the Control Point Selection Tool

To use the Control Point Selection Tool, enter the cpselect command at the
MATLAB prompt. As arguments, specify the image you want to register (the
input image), and the image you want to compare it to (the base image).

To illustrate, this code fragment reads an image into a variable, moon_base, in
the MATLAB workspace. It then creates another version of the image with a
deliberate size distortion, called moon_input. This is the image that needs
registration to remove the size distortion. The code then starts the cpselect
tool, specifying the two images.

moon_base = imread('moon.tif');
moon_input = imresize(moon_base, 1.2);
cpselect(moon_input, moon_base);

The cpselect command has other optional arguments. For example, you can
restart a control point selection session by including a cpstruct structure
as the third argument. For more information about restarting sessions, see
“Saving Control Points” on page 7-28. For complete details, see the cpselect
reference page.

Default Views of the Images

When the Control Point Selection Tool starts, it contains four image display
windows. The top two windows are called the Detail windows. These windows
show a closeup view of a portion of the images you are working with. The
input image is on the left and the base image is on the right. The two
windows at the bottom of the interface are called the Overview windows.
These windows show the images in their entirety, at the largest scale that fits
the window. The input overview image is on the left and the base overview
image is on the right.

Superimposed on the image in the Overview windows is a rectangle, called the
detail rectangle. This rectangle defines the part of the image that is visible
in the Detail window. By default, at startup, the detail rectangle covers one
quarter of the entire image and is positioned over the center of the image.
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Viewing the Images

By default, cpselect displays the entire base and input images in the
Overview windows and displays a closeup view of a portion of these images
in the Detail windows. However, to find visual elements that are common to
both images, you might want to change the section of the image displayed in
the detail view or zoom in on a part of the image to view it in more detail.
The following sections describe the different ways to change your view of
the images:

“Using Scroll Bars to View Other Parts of an Image” on page 7-17
“Using the Detail Rectangle to Change the View” on page 7-17
“Panning the Image Displayed in the Detail Window” on page 7-18
“Zooming In and Out on an Image” on page 7-18

“Specifying the Magnification of the Images” on page 7-19
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® “Locking the Relative Magnification of the Input and Base Images” on
page 7-20

Using Scroll Bars to View Other Parts of an Image

To view parts of an image that are not visible in the Detail or Overview
windows, use the scroll bars provided in each window.

As you scroll the image in the Detail window, note how the detail rectangle
moves over the image in the Overview window. The position of the detail
rectangle always shows the portion of the image in the Detail window.

Using the Detail Rectangle to Change the View

To get a closer view of any part of the image, move the detail rectangle in the
Overview window over that section of the image. cpselect displays that
section of the image in the Detail window at a higher magnification than
the overview window.

To move the detail rectangle,

1 Click the Default Cursor button - % |in the toolbar.

2 Move the pointer into the detail rectangle. The cursor changes to the fleur

e

shape, o

3 Press and hold the mouse button to drag the detail rectangle anywhere
on the image.

Note As you move the detail rectangle over the image in the Overview
window, the view of the image displayed in the Detail window changes.
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Panning the Image Displayed in the Detail Window
To change the section of the image displayed in the Detail window, use the
pan tool to move the image in the window.

To use the pan tool,

1 Click the Drag Images to Pan button ] in the toolbar.

2 Move the pointer over the image in the Detail window. The cursor changes

-

to the fleur shape, ¥.

3 Press and hold the mouse button and drag the image in the Detail window.

Note As you move the image in the Detail window, the detail rectangle in
the Overview window moves.

Zooming In and Out on an Image

To enlarge an image to get a closer look or shrink an image to see the whole
image in context, use the Zoom buttons on the button bar. (You can also zoom
in or out on an image by changing the magnification. See “Specifying the
Magnification of the Images” on page 7-19 for more information.)

To zoom in or zoom out on the base or input images,

1 Click the appropriate magnifying glass button.

Toamin foomout

2 Move the pointer over the image you want to zoom in or out on. The cursor
changes to crosshairs, 1.

You can zoom in or out on either the input or the base images, in either the
Detail or Overview windows. To keep the relative magnifications of the
base and input images synchronized, click the Lock ratio check box. See
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“Locking the Relative Magnification of the Input and Base Images” on page
7-20 for more information.

Note If you zoom in close on the image displayed in the Overview window,
the detail rectangle might no longer be visible.

You can use the zoom tool in two ways:

® Position the cursor over a location in the image and click the mouse.
With each click, cpselect changes the magnification of the image by a
preset amount. (See “Specifying the Magnification of the Images” on
page 7-19 for a list of some of these magnifications.) cpselect centers
the new view of the image on the spot where you clicked.

¢ Alternatively, you can position the cursor over a location in the image
and, while pressing and holding the mouse button, draw a rectangle
defining the area you want to zoom in or out on. cpselect magnifies
the image so that the chosen section fills the Detail window. cpselect
resizes the detail rectangle in the Overview window as well.

Note When you zoom in or out on an image, notice how the magnification
value changes.

Specifying the Magnification of the Images

To enlarge an image to get a closer look or to shrink an image to see the whole
image in context, use the magnification edit box. (You can also use the Zoom
buttons to enlarge or shrink an image. See “Zooming In and Out on an Image”
on page 7-18 for more information.)

To change the magnification of an image,

1 Move the cursor into the magnification edit box of the window you want to
change. The cursor changes to the text entry cursor.
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Note Each Detail window and Overview window has its own magnification
edit box.

2 Type a new value in the magnification edit box and press Enter, or click
the menu associated with the edit box and choose from a list of preset
magnifications. cpselect changes the magnification of the image and
displays the new view in the appropriate window.

Magnification edit box Magnification menu

Input Detail: moon_input m | il [ Laockratio ||E?% LI Base Detail: moon_base

r

Locking the Relative Magnification of the Input and Base
Images

To keep the relative magnification of the input and base images automatically
synchronized in the Detail or Overview windows, click the Lock Ratio check
box. The two Detail windows and the two Overview windows each have their
own Lock ratio check boxes.
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When the Lock Ratio check box is selected, cpselect changes the
magnification of both the input and base images when you zoom in or out on
either one of the images or specify a magnification value for either of the
images.

Lock magnification ratio check box

[100% | Lockratio ||53% 4

Specifying Matching Control Point Pairs

The primary function of the Control Point Selection Tool is to enable you
to pick control points in the image to be registered, the input image, and
the image to which you are comparing it, the base image. When you start
cpselect, the point selection tool is enabled, by default.

You specify control points by pointing and clicking in the input and base
images, in either the Detail or the Overview windows. Each point you specify
in the input image must have a match in the base image. The following
sections describe the ways you can use the Control Point Selection Tool to
choose control point pairs:

¢ “Picking Control Point Pairs Manually” on page 7-21
e “Using Control Point Prediction” on page 7-23

This section also describes how to move control points after you’ve created
them and how to delete control points.

Picking Control Point Pairs Manually
To specify a pair of control points in your images,

1 Click the Control Point Selection button il Control point selection
mode is active by default.

2 Position the cursor over a feature you have visually selected in any of the

images displayed. The cursor changes to a pointing finger
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You can pick control points in either of the Detail windows, input or base,
or in either of the Overview windows, input or base. You also can work in
either direction: input-to-base image, or base-to-input image.

3 Click the mouse button. cpselect places a control point symbol at the
position you specified, in both the Detail window and the Overview window.
(The appearance of the control point symbol indicates its current state.
Initially, control points are in an active, unmatched state. See “Control
Point States” on page 7-25 for more information.

Note Depending on where in the image you pick control points, the symbol
for the point might be visible in the Overview window, but not in the Detail
window.

4 To create the match for this control point, move the cursor into the
corresponding Detail or Overview window. For example, if you started in an
input window, move the cursor to a base window.

5 Click the mouse button. cpselect places a control point symbol at the
position you specified, in both the Detail and Overview windows. Because
this control point completes a pair, the appearance of this symbol indicates
an active, matched state. Note that the appearance of the first control point
you selected (in step 3) also changes to an active, matched state.

You pick pairs of control points by moving from a view of the input image to a
view of the base image, or vice versa. You can pick several control points in one
view of the image, and then move to the corresponding window to locate their
matches. To match an unmatched control point, select it to make it active,
and then pick a point in the corresponding view window. When you select a
match for a control point, the symbols for both points change to indicate their
matched state. You can move or delete control points after you create them.

The following figure illustrates control points in several states.
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Using Control Point Prediction

Instead of picking matching control points by moving the cursor between
corresponding Detail or Overview windows, you can let the Control Point
Selection Tool estimate the match for the control points you specify,
automatically. The Control Point Selection Tool determines the position of the
matching control point based on the geometric relationship of the previously
selected control points.
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Note By default, the Control Point Selection Tool does not include predicted
points in the set of valid control points returned in input_points or

base points. To include predicted points, you must accept them by selecting
the points and fine-tuning their position with the cursor. When you move

a predicted point, the Control Point Selection Tool changes the symbol to
indicate that it has changed to a standard control point. For more information,
see “Moving Control Points” on page 7-26.

To illustrate point prediction, this figure shows four control points selected
in the input image, where the points form the four corners of a square.
(The control points selections in the figure do not attempt to identify any
landmarks in the image.) The figure shows the picking of a fourth point, in
the left window, and the corresponding predicted point in the right window.
Note how the Control Point Selection Tool places the predicted point at the
same location relative to the other control points, forming the bottom right
corner of the square.

' F 4

Control point selected manually Predicted control point

Note Because the Control Point Selection Tool predicts control point locations
based on the locations of the previous control points, you cannot use point
prediction until you have a minimum of two pairs of matched points. Until
this minimum is met, the Control Point Prediction button is disabled.
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To use control point prediction,

1 Click the Control Point Prediction button \ﬁl

2 Position the cursor anywhere in any of the images displayed. The cursor
changes to a pointing finger, B

You can pick control points in either of the Detail windows, input or base,
or in either of the Overview windows, input or base. You also can work in
either direction: input-to-base image or base-to-input image.

3 Click either mouse button. The Control Point Selection Tool places a control
point symbol at the position you specified and places another control point
symbol for a matching point in all the other windows. The symbol for
the predicted point contains the letter "P," indicating that it’s a predicted
control point.

This figure illustrates predicted points in active unmatched, matched, and
predicted states. For a complete description of all point states, see “Control
Point States” on page 7-25.

r

Ellr

i1 |
Prediced —— |— Adtive predicted
control point control point

Control Point States

The appearance of control point symbols indicates their current state. When
you first pick a control point, its state is active and unmatched. When you
pick the match for a control point, the appearance of both symbols changes to
indicate their matched status.
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This table lists all the possible control point states with their symbols.

cpselect displays this list in a separate window called a Legend. The
Legend is visible by default, but you can control its visibility using the

Legend option from the View menu.

Control Point States

Symbol State Description
= Active The point is currently selected but does not have
unmatched | a matching point. This is the initial state of most
points.
e Active The point is currently selected and has a matching
matched point.
Active The point is a predicted point. If you move its
predicted position, the point changes to active matched state.
& Unmatched | The point is not selected and it is unmatched. You
must select it before you can create its matching
point.
& Matched The point has a matching point.
) Predicted This point was added by cpselect during point
prediction.

Moving Control Points
To move a control point,

1 Click the Control Point Selection button il. or the Default Cursor

button _ & |

2 Position the cursor over the control point you want to move.

3 Press and hold the mouse button and drag the control point. The state of
the control point changes to active when you move it.

If you move a predicted control point, the state of the control point changes to
a regular (nonpredicted) control point.



Selecting Control Points

Deleting Control Points
To delete a control point, and optionally its matching point,

1 Click the Control Point Selection button il. or the Default Cursor

button _ & |

2 Click the control point you want to delete. Its state changes to active. If the
control point has a match, both points become active.

3 Delete the point (or points) using one of these methods:

¢ Pressing the Backspace key
¢ Pressing the Delete key
¢ Choosing one of the delete options from the Edit menu

Using this menu you can delete individual points or pairs of matched
points, in the input or base images.

Undo Delete
Redo Delete

Delete Active Pair
Deleieophons —|: Delete Active Input Point

Delete Active Base Point

Undoing and Redoing Control Point Selections

You can undo a deletion or series of deletions using the Undo Delete option
on the cpselect Edit menu.

. Undo Delete
Undo ophons _[ Redo Delete
Delete Active Pair

Delete Active Input Paint
Delete Active Base Point

After undoing a deletion, you can delete the points again using the Redo
option, also on the Edit menu.
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Saving Control Points

After you specify control point pairs, you must save them in the MATLAB
workspace to make them available for the next step in image registration,
processing by cp2tform.

To save control points to the MATLAB workspace,

1 Select File on the Control Point Selection Tool menu bar.

2 Choose the Save Points to Workspace option. The Control Point
Selection Tool displays this dialog box:

<) Save Points to Workspace [ ]

¥ Input points of valid pairs: |input_p0ints
[+ Base points af valid pairs: |base_p0ints
[ Structure with all paints: |cpstruct

Ok | Cancel |

By default, the Control Point Selection Tool saves the x-coordinates and
y-coordinates that specify the locations of the control points you selected in
two arrays named input_points and base_points, although you can specify
other names. These are n-by-2 arrays, where n is the number of valid control
point pairs you selected. For example, this is an example of the input_points
array if you picked four pairs of control points. The values in the left column
represent the x-coordinates; the values in the right column represent the
y-coordinates.

input_points =

215.6667 262.3333
225.7778 311.3333
156.5556 340.1111
270.8889 368.8889

Whenever you exit the Control Point Selection Tool, it asks if you want to
save your control points.
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Saving Your Control Point Selection Session

To save the current state of the Control Point Selection Tool, select the
Structure with all points check box in the Save Points to Workspace dialog
box.

<) Save Points to Workspace [ ]

¥ Input points of valid pairs: |input_p0ints
[+ Base points af valid pairs: |base_p0ints

I Sirciure with all pointsi  [cpstruct

Cancel |

This option saves the positions of all the control points you specified and their
current states in a cpstruct structure.

cpstruct =

inputPoints: [4x2 double]
basePoints: [4x2 double]
inputBasePairs: [4x2 double]
ids: [4x1 double]
inputIdPairs: [4x2 double]
baseIdPairs: [4x2 double]
isInputPredicted: [4x1 double]
isBasePredicted: [4x1 double]

You can use the cpstruct to restart a control point selection session at the
point where you left off.

This option is useful if you are picking many points over a long time and want
to preserve unmatched and predicted points when you resume work. The
Control Point Selection Tool does not include unmatched and predicted points
in the input_points and base points arrays.

To extract the arrays of valid control point coordinates from a cpstruct, use
the cpstruct2pairs function.

7-29



7 Image Registration

Using Correlation to Improve Control Points

You might want to fine-tune the control points you selected using cpselect.
Using cross-correlation, you can sometimes improve the points you selected
by eye using the Control Point Selection Tool.

To use cross-correlation, pass sets of control points in the input and base
images, along with the images themselves, to the cpcorr function.

input_pts_adj= cpcorr(input_points, base_points, input, base);

The cpcorr function defines 11-by-11 regions around each control point in the
input image and around the matching control point in the base image, and
then calculates the correlation between the values at each pixel in the region.
Next, the cpcorr function looks for the position with the highest correlation
value and uses this as the optimal position of the control point. The cpcorr
function only moves control points up to 4 pixels based on the results of the
cross-correlation.

Note Features in the two images must be at the same scale and have the
same orientation. They cannot be rotated relative to each other.

If cpcorr cannot correlate some of the control points, it returns their values
in input_points unmodified.
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Linear Filtering and Filter
Design

The Image Processing Toolbox provides a number of functions for designing
and implementing two-dimensional linear filters for image data. This chapter
describes these functions and how to use them effectively.

Linear Filtering (p. 8-2) Provides an explanation of linear
filtering and how it is implemented
in the toolbox. This topic describes
filtering in terms of the spatial
domain, and is accessible to anyone
doing image processing.

Filter Design (p. 8-15) Discusses designing two-dimensional
finite impulse response (FIR) filters.
This section assumes you are
familiar with working in the
frequency domain.
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Linear Filtering

Filtering is a technique for modifying or enhancing an image. For example,
you can filter an image to emphasize certain features or remove other
features. Image processing operations implemented with filtering include
smoothing, sharpening, and edge enhancement.

Filtering is a neighborhood operation, in which the value of any given pixel
in the output image is determined by applying some algorithm to the values
of the pixels in the neighborhood of the corresponding input pixel. A pixel’s
neighborhood is some set of pixels, defined by their locations relative to that
pixel. (See Chapter 15, “Neighborhood and Block Operations” for a general
discussion of neighborhood operations.)

Linear filtering is filtering in which the value of an output pixel is a linear
combination of the values of the pixels in the input pixel’s neighborhood.

This section discusses linear filtering in MATLAB and the Image Processing
Toolbox. It includes

® A description of filtering, using convolution and correlation.

¢ A description of how to perform filtering using the imfilter function

e A discussion about using predefined filter types

See “Filter Design” on page 8-15 for information about how to design filters.

Convolution

Linear filtering of an image is accomplished through an operation called
convolution. Convolution is a neighborhood operation in which each output
pixel is the weighted sum of neighboring input pixels. The matrix of weights
is called the convolution kernel, also known as the filter. A convolution kernel
is a correlation kernel that has been rotated 180 degrees.

For example, suppose the image is

A= [17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
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10 12 19 21 3
11 18 25 2 9]

and the convolution kernel is

h =18 1 6
3 5 7
4 9 2]

The following figure shows how to compute the (2,4) output pixel using these
steps:

1 Rotate the convolution kernel 180 degrees about its center element.

2 Slide the center element of the convolution kernel so that it lies on top of
the (2,4) element of A.

3 Multiply each weight in the rotated convolution kernel by the pixel of A
underneath.

4 Sum the individual products from step 3.
Hence the (2,4) output pixel is
1-2+8-9+15-4+7-7T+14-5+18-3+13-8+20-1+22 -8=575

Values of rototed comvalution kernel

= 1 M 1 i 15

Imoge pixel values 13 5
. ——— Center of kemel

10 12 19 N i

1 18 15 1 §

Computing the (2,4) Output of Convolution
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Correlation

The operation called correlation is closely related to convolution. In
correlation, the value of an output pixel is also computed as a weighted sum of
neighboring pixels. The difference is that the matrix of weights, in this case
called the correlation kernel, is not rotated during the computation. The filter
design functions in the Image Processing Toolbox return correlation kernels.

The following figure shows how to compute the (2,4) output pixel of the
correlation of A, assuming h is a correlation kernel instead of a convolution
kernel, using these steps:

1 Slide the center element of the correlation kernel so that lies on top of
the (2,4) element of A.

2 Multiply each weight in the correlation kernel by the pixel of A underneath.
3 Sum the individual products from step 3.
The (2,4) output pixel from the correlation is

1-8+8-1+15-8+7-3+214 - 5+168 - 7+13 - 4+820 . 9+22.2 =585

Values of correkation kernz|

] |
=17 ) 1 B[ 15

— | Cenierof kernel

Image pixel valves|—j 73 § 7 II".-141-5-\.\1 HI?
A A

N N T I T

10 11 W1 n 1

1 18 15 1 §

Computing the (2,4) Output of Correlation
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Filtering Using imfilter

Filtering of images, either by correlation or convolution, can be performed
using the toolbox function imfilter. This example filters an image with
a 5-by-5 filter containing equal weights. Such a filter is often called an
averaging filter.

I imread('coins.png');

h ones(5,5) / 25;

I2 = imfilter(I,h);

imshow(I), title('Original Image');

figure, imshow(I2), title('Filtered Image')

Original Image Filtered Image

Data Types

The imfilter function handles data types similarly to the way the image
arithmetic functions do, as described in “Image Arithmetic Saturation Rules”
on page 2-25. The output image has the same data type, or numeric class, as
the input image. The imfilter function computes the value of each output
pixel using double-precision, floating-point arithmetic. If the result exceeds
the range of the data type, the imfilter function truncates the result to
that data type’s allowed range. If it is an integer data type, imfilter rounds
fractional values.

Because of the truncation behavior, you might sometimes want to consider
converting your image to a different data type before calling imfilter. In
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this example, the output of imfilter has negative values when the input is
of class double.

A = magic(5)

A =
17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9

h=1[-101]

h =
-1 0 1

imfilter(A,h)

ans =
24 -16 -16 14 -8
5 -16 9 9 -14
6 9 14 9 -20
12 9 9 -16 -21
18 14 -16 -16 -2

Notice that the result has negative values. Now suppose A is of class uint8,
instead of double.

A = uint8(magic(5));
imfilter(A,h)

ans =
24 0 0 14 0
5 0 9 9 0
6 9 14 9 0
12 9 9 0 0
18 14 0 0 0
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Since the input to imfilter is of class uint8, the output also is of class
uint8, and so the negative values are truncated to 0. In such cases, it might
be appropriate to convert the image to another type, such as a signed integer
type, single, or double, before calling imfilter.

Correlation and Convolution Options

The imfilter function can perform filtering using either correlation or
convolution. It uses correlation by default, because the filter design functions,
described in “Filter Design” on page 8-15, and the fspecial function,
described in “Using Predefined Filter Types” on page 8-13, produce correlation
kernels.

However, if you want to perform filtering using convolution instead, you can
pass the string 'conv' as an optional input argument to imfilter. For
example:

A magic(5);
h=1-101]
imfilter(A,h) % filter using correlation

ans =
24 -16 -16 14 -8
5 -16 9 9 -14
6 9 14 9 -20
12 9 9 -16 -21
18 14 -16 -16 -2

\0

imfilter(A,h,'conv') s filter using convolution

ans =
-24 16 16 -14 8
-5 16 -9 -9 14
-6 -9 -14 -9 20
-12 -9 -9 16 21
-18 -14 16 16 2

8-7
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Boundary Padding Options

When computing an output pixel at the boundary of an image, a portion of
the convolution or correlation kernel is usually off the edge of the image,
as illustrated in the following figure.

What valve should these
autside pirek have?

7

7w | Y
A%
I I o BR T LN T
s | 8|l w|n
w | w| ol
molw || 2|9

(enter of kemel

When the Values of the Kernel Fall Outside the Image

The imfilter function normally fills in these off-the-edge image pixels by
assuming that they are 0. This is called zero padding and is illustrated in

the following figure.
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Dutside pisebk are
asumed fo be 0.

(enter of kemel

1| 18 5 : g

Zero Padding of Outside Pixels

When you filter an image, zero padding can result in a dark band around the
edge of the image, as shown in this example.

I imread('eight.tif');

h ones(5,5) / 25;

I2 = imfilter(I,h);

imshow(I), title('Original Image');

figure, imshow(I2), title('Filtered Image with Black Border')
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8-10

Filtered Image with Black Border

Original Image

To eliminate the zero-padding artifacts around the edge of the image,
imfilter offers an alternative boundary padding method called border
replication. In border replication, the value of any pixel outside the image
is determined by replicating the value from the nearest border pixel. This

is illustrated in the following figure.

These pive |values are rep licated
fram boundary pingk.

i | [
1 ] 15
3 T
17 u 1 é H-}\I 15
| (enter of kemel
£ L] 2

1 b T | 4 [ 18

Replicated Boundary Pixels
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To filter using border replication, pass the additional optional argument
‘replicate’' to imfilter.

I3 = imfilter(I,h, 'replicate’');
figure, imshow(I3);
title('Filtered Image with Border Replication')

Filtered Image with Border Replication

The imfilter function supports other boundary padding options, such as
‘circular' and 'symmetric'. See the reference page for imfilter for details.

Multidimensional Filtering

The imfilter function can handle both multidimensional images and
multidimensional filters. A convenient property of filtering is that filtering
a three-dimensional image with a two-dimensional filter is equivalent to
filtering each plane of the three-dimensional image individually with the
same two-dimensional filter. This example shows how easy it is to filter each
color plane of a truecolor image with the same filter:

1 Read in an RGB image and display it.

rgb = imread('peppers.png');
imshow(rgb);

8-11
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2 Filter the image and display it.
h = ones(5,5)/25;

rgb2 = imfilter(rgb,h);
figure, imshow(rgb2)

8-12
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Relationship to Other Filtering Functions

MATLAB has several two-dimensional and multidimensional filtering
functions. The function filter2 performs two-dimensional correlation, conv2
performs two-dimensional convolution, and convn performs multidimensional
convolution. Each of these filtering functions always converts the input to
double, and the output is always double. These other filtering functions
always assume the input is zero padded, and they do not support other
padding options.

In contrast, the imfilter function does not convert input images to double.
The imfilter function also offers a flexible set of boundary padding options,
as described in “Boundary Padding Options” on page 8-8.

Using Predefined Filter Types

The fspecial function produces several kinds of predefined filters, in the form
of correlation kernels. After creating a filter with fspecial, you can apply it
directly to your image data using imfilter. This example illustrates applying
an unsharp masking filter to a grayscale image. The unsharp masking filter
has the effect of making edges and fine detail in the image more crisp.

8-13
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I = imread('moon.tif"')
h = fspecial('unsharp'
I2 = imfilter(I,h);
imshow(I), title('Original Image')

figure, imshow(I2), title('Filtered Image')

)

Imoge Courtesy of Michael Myers
Original Image Filtered Image
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Filter Design

This section describes working in the frequency domain to design filters.
Topics discussed include

¢ Finite impulse response (FIR) filters, the class of linear filter that the
toolbox supports

¢ The frequency transformation method, which transforms a one-dimensional
FIR filter into a two-dimensional FIR filter

¢ The frequency sampling method, which creates a filter based on a desired
frequency response

¢ The windowing method, which multiplies the ideal impulse response with a
window function to generate the filter

¢ Creating the desired frequency response matrix
¢ Computing the frequency response of a filter
This section assumes you are familiar with working in the frequency domain.

This topic is discussed in many signal processing and image processing
textbooks.

Note Most of the design methods described in this section work by creating a
two-dimensional filter from a one-dimensional filter or window created using
functions from the Signal Processing Toolbox. Although this toolbox is not
required, you might find it difficult to design filters in the Image Processing
Toolbox if you do not have the Signal Processing Toolbox as well.

8-15
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FIR Filters

The Image Processing Toolbox supports one class of linear filter, the
two-dimensional finite impulse response (FIR) filter. FIR filters have a finite
extent to a single point, or impulse. All filter design functions in the Image
Processing Toolbox return FIR filters.

FIR filters have several characteristics that make them ideal for image
processing in the MATLAB environment:

¢ FIR filters are easy to represent as matrices of coefficients.

¢ Two-dimensional FIR filters are natural extensions of one-dimensional
FIR filters.

® There are several well-known, reliable methods for FIR filter design.
¢ FIR filters are easy to implement.

¢ FIR filters can be designed to have linear phase, which helps prevent
distortion.

Another class of filter, the infinite impulse response (IIR) filter, is not as
suitable for image processing applications. It lacks the inherent stability and
ease of design and implementation of the FIR filter. Therefore, this toolbox
does not provide IIR filter support.

Frequency Transformation Method

The frequency transformation method transforms a one-dimensional FIR
filter into a two-dimensional FIR filter. The frequency transformation
method preserves most of the characteristics of the one-dimensional filter,
particularly the transition bandwidth and ripple characteristics. This method
uses a transformation matrix, a set of elements that defines the frequency
transformation.

The toolbox function ftrans2 implements the frequency transformation
method. This function’s default transformation matrix produces filters with
nearly circular symmetry. By defining your own transformation matrix, you
can obtain different symmetries. (See Jae S. Lim, Two-Dimensional Signal
and Image Processing, 1990, for details.)
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The frequency transformation method generally produces very good results,
as it is easier to design a one-dimensional filter with particular characteristics
than a corresponding two-dimensional filter. For instance, the next example
designs an optimal equiripple one-dimensional FIR filter and uses it to
create a two-dimensional filter with similar characteristics. The shape of the
one-dimensional frequency response is clearly evident in the two-dimensional
response

b = remez(10,[0 0.4 0.6 1],[1 1 0 0]);
h = ftrans2(b);

[H,w] = freqz(b,1,64, 'whole');
colormap(jet(64))
plot(w/pi-1,fftshift(abs(H)))

figure, freqz2(h,[32 32])

1.4

1.2} 1

0.8¢

0.6

0.4¢1
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One-Dimensional Frequency Response
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Frequency Sampling Method

The frequency sampling method creates a filter based on a desired frequency
response. Given a matrix of points that define the shape of the frequency
response, this method creates a filter whose frequency response passes
through those points. Frequency sampling places no constraints on the
behavior of the frequency response between the given points; usually, the
response ripples in these areas. (Ripples are oscillations around a constant
value. The frequency response of a practical filter often has ripples where the
frequency response of an ideal filter is flat.)

The toolbox function fsamp2 implements frequency sampling design for
two-dimensional FIR filters. fsamp2 returns a filter h with a frequency
response that passes through the points in the input matrix Hd. The example
below creates an 11-by-11 filter using fsamp2 and plots the frequency response
of the resulting filter. (The freqz2 function in this example calculates the
two-dimensional frequency response of a filter. See “Computing the Frequency
Response of a Filter” on page 8-22 for more information.)
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Hd = zeros(11,11); Hd(4:8,4:8) = 1;

[f1,f2] = freqspace(11, 'meshgrid');

mesh(f1,f2,Hd), axis([-1 1 -1 1 0 1.2]), colormap(jet(64))
h = fsamp2(Hd);

figure, freqz2(h,[32 32]), axis([-1 1 -1 1 0 1.2])

Desired Two-Dimensional Frequency Response (left) and Actual
Two-Dimensional Frequency Response (right)

Notice the ripples in the actual frequency response, compared to the desired
frequency response. These ripples are a fundamental problem with the
frequency sampling design method. They occur wherever there are sharp
transitions in the desired response.

You can reduce the spatial extent of the ripples by using a larger filter.
However, a larger filter does not reduce the height of the ripples, and requires
more computation time for filtering. To achieve a smoother approximation to
the desired frequency response, consider using the frequency transformation
method or the windowing method.

Windowing Method

The windowing method involves multiplying the ideal impulse response
with a window function to generate a corresponding filter, which tapers the
ideal impulse response. Like the frequency sampling method, the windowing
method produces a filter whose frequency response approximates a desired
frequency response. The windowing method, however, tends to produce better
results than the frequency sampling method.

8-19
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The toolbox provides two functions for window-based filter design, fwind1 and
fwind2. fwind1 designs a two-dimensional filter by using a two-dimensional
window that it creates from one or two one-dimensional windows that

you specify. fwind2 designs a two-dimensional filter by using a specified
two-dimensional window directly.

fwind1 supports two different methods for making the two-dimensional
windows it uses:

® Transforming a single one-dimensional window to create a two-dimensional
window that is nearly circularly symmetric, by using a process similar to
rotation

* Creating a rectangular, separable window from two one-dimensional
windows, by computing their outer product

The example below uses fwind1 to create an 11-by-11 filter from the desired
frequency response Hd. Here, the hamming function from the Signal Processing
Toolbox is used to create a one-dimensional window, which fwind1 then
extends to a two-dimensional window.

Hd = zeros(11,11); Hd(4:8,4:8) = 1;

[f1,f2] = freqspace(11, 'meshgrid');

mesh(f1,f2,Hd), axis([-1 1 -1 1 0 1.2]), colormap(jet(64))
h = fwind1 (Hd,hamming(11));

figure, freqz2(h,[32 32]), axis([-1 1 -1 1 0 1.2])

Desired Two-Dimensional Frequency Response (left) and Actual
Two-Dimensional Frequency Response (right)



Filter Design

Creating the Desired Frequency Response Matrix

The filter design functions fsamp2, fwind2, and fwind2 all create filters based
on a desired frequency response magnitude matrix. Frequency response is a
mathematical function describing the gain of a filter in response to different
input frequencies.

You can create an appropriate desired frequency response matrix using the
fregspace function. freqspace returns correct, evenly spaced frequency
values for any size response. If you create a desired frequency response
matrix using frequency points other than those returned by freqspace, you
might get unexpected results, such as nonlinear phase.

For example, to create a circular ideal lowpass frequency response with cutoff
at 0.5, use

[f1,f2] = freqspace(25, 'meshgrid');

Hd = zeros(25,25); d = sqrt(f1.72 + f2.72) < 0.5;
Hd(d) = 1;

mesh (f1,f2,Hd)

Ideal Circular Lowpass Frequency Response

Note that for this frequency response, the filters produced by fsamp2, fwind1,
and fwind2 are real. This result is desirable for most image processing
applications. To achieve this in general, the desired frequency response
should be symmetric about the frequency origin (f1 = 0, f2 = 0).
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Computing the Frequency Response of a Filter

The freqz2 function computes the frequency response for a two-dimensional
filter. With no output arguments, freqz2 creates a mesh plot of the frequency
response. For example, consider this FIR filter,

h =[0.1667 0.6667 0.1667
0.6667 -3.3333 0.6667
0.1667 0.6667 0.1667];

This command computes and displays the 64-by-64 point frequency response
of h.

freqz2(h)

Frequency Response of a Two-Dimensional Filter

To obtain the frequency response matrix H and the frequency point vectors f1
and f2, use output arguments

[H,f1,f2] = freqz2(h);
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freqz2 normalizes the frequencies f1 and f2 so that the value 1.0 corresponds
to half the sampling frequency, or © radians.

For a simple m-by-n response, as shown above, freqz2 uses the
two-dimensional fast Fourier transform function fft2. You can also specify
vectors of arbitrary frequency points, but in this case freqz2 uses a slower
algorithm.

See “Fourier Transform” on page 9-2 for more information about the fast
Fourier transform and its application to linear filtering and filter design.

8-23
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Transforms

The usual mathematical representation of an image is a function of two
spatial variables: fix,¥). The value of the function at a particular location
(2, ¥) represents the intensity of the image at that point. This is called the
spatial domain. The term transform refers to an alternative mathematical
representation of an image. For example, the Fourier transform is a
representation of an image as a sum of complex exponentials of varying
magnitudes, frequencies, and phases. This is called the frequency domain.
Transforms are useful for a wide range of purposes, including convolution,
enhancement, feature detection, and compression.

This chapter defines several important transforms and shows examples of
their application to image processing.

Fourier Transform (p. 9-2) Defines the Fourier transform and
some of its applications in image
processing

Discrete Cosine Transform (p. 9-15) Describes the discrete cosine
transform (DCT) of an image and its
application, particularly in image
compression

Radon Transform (p. 9-19) Describes how the Image Processing
Toolbox radon function computes
projections of an image matrix along
specified directions

Fan-Beam Projection Data (p. 9-35)  Describes how the Image Processing
Toolbox radon function computes
projections of an image matrix along
specified directions
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Fourier Transform

The Fourier transform is a representation of an image as a sum of complex
exponentials of varying magnitudes, frequencies, and phases. The Fourier
transform plays a critical role in a broad range of image processing
applications, including enhancement, analysis, restoration, and compression.

This section includes the following subsections:

¢ “Definition of Fourier Transform” on page 9-2

® “Discrete Fourier Transform” on page 9-7, including a discussion of fast
Fourier transform

e “Applications of the Fourier Transform” on page 9-10 (sample applications
using Fourier transforms)

Definition of Fourier Transform

If f(m,n) is a function of two discrete spatial variables m and n, then the
two-dimensional Fourier transform of f (m. n) is defined by the relationship

Fi Wy, Wy ) = E E fim,n Je—jm,mf—jmﬂn

M ==00 1 = —00

The variables , and o, are frequency variables; their units are radians

per sample. F(wy. Wy is often called the frequency-domain representation
of fim,n). Flwy. wy) is a complex-valued function that is periodic both in
“1and "2, with period 2. Because of the periodicity, usually only the range
—T= Wy. Wy =Tjg displayed. Note that F'(0,0) is the sum of all the values of
fim,n). For this reason, F(0, 0 is often called the constant component or DC
component of the Fourier transform. (DC stands for direct current; it is an
electrical engineering term that refers to a constant-voltage power source, as
opposed to a power source whose voltage varies sinusoidally.)

The inverse of a transform is an operation that when performed on a
transformed image produces the original image. The inverse two-dimensional
Fourier transform is given by
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T T . .
f{n-;,n_] = i J -[ Flw L, W JE‘Jm]mE‘Jm:n dur, diw
411.2 u.'l]=—|'|.' Wy = —T 1 E 1 2

Roughly speaking, this equation means that fim.n) can be represented as a
sum of an infinite number of complex exponentials (sinusoids) with different
frequencies. The magnitude and phase of the contribution at the frequencies
(w1: Wg) gre given by Flwy, wy),

Visualizing the Fourier Transform

To illustrate, consider a function f (7. 1) that equals 1 within a rectangular
region and 0 everywhere else. To simplify the diagram, fim.n)is shown as a
continuous function, even though the variables m and n are discrete.

n

fim,n)

Y

n

Rectangular Function

The following figure shows, as a mesh plot, the magnitude of the Fourier

transform, |Fi w1- WQJL of the rectangular function shown in the preceding
figure. The mesh plot of the magnitude is a common way to visualize the
Fourier transform.
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Magnitude Image of a Rectangular Function

The peak at the center of the plot is F{0, 07, which is the sum of all the values
in fim.n) The plot also shows that Fiw;. @) has more energy at high
horizontal frequencies than at high vertical frequencies. This reflects the fact
that horizontal cross sections of /' (7. 1) are narrow pulses, while vertical
cross sections are broad pulses. Narrow pulses have more high-frequency
content than broad pulses.

Another common way to visualize the Fourier transform is to display

log|F' (w3, wg)| a5 an image, as shown.
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wl

Log of the Fourier Transform of a Rectangular Function

Using the logarithm helps to bring out details of the Fourier transform in
regions where Fiw;. w5 is very close to 0.

Examples of the Fourier transform for other simple shapes are shown below.
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Fourier Transforms of Some Simple Shapes
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Discrete Fourier Transform

Working with the Fourier transform on a computer usually involves a form
of the transform known as the discrete Fourier transform (DFT). A discrete
transform is a transform whose input and output values are discrete samples,
making it convenient for computer manipulation. There are two principal
reasons for using this form of the transform:

¢ The input and output of the DFT are both discrete, which makes it
convenient for computer manipulations.

e There is a fast algorithm for computing the DFT known as the fast Fourier
transform (FFT).

The DFT is usually defined for a discrete function f (7. ) that is nonzero only
over the finite region 0 =m <M -1 and 0 <n < N-1. The two-dimensional
M-by-N DFT and inverse M-by-N DFT relationships are given by

M-1 N-1
— 2] —j2asN =D,1,...,M—1
Fip.q) = E z fim,n)e JfETfH]pn!f JI2n/Nign r
m=0 n=10 q= D,l,...,N—l
M-1 N-1
2 Mipm 32z Nign m=01,... M-1
(m.n) = Fip.giwe’ €
! ! NZD Eﬂ i n=01..N-1
F: q:

The values F(P- @) are the DFT coefficients of (M. 1) The zero-frequency
coefficient, F(0, DJ, is often called the "DC component." DC is an electrical
engineering term that stands for direct current. (Note that matrix indices in
MATLAB always start at 1 rather than 0; therefore, the matrix elements
f(1,1) and F(1,1) correspond to the mathematical quantities £(0.0) and
Fi0.0) respectively.)

The MATLAB functions fft, fft2, and fftn implement the fast Fourier
transform algorithm for computing the one-dimensional DFT, two-dimensional
DFT, and N-dimensional DF'T, respectively. The functions ifft, ifft2, and
ifftn compute the inverse DFT.
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Relationship to the Fourier Transform
The DFT coefficients (P-4 are samples of the Fourier transform Flwy, wg),

p=01 ... M-1
g=01..N-1

Fip.g) = Flw;. wy)
B-4a 1 e wy = Eaps M

we = 2ag N

Example

1 Construct a matrix f that is similar to the function f(m,n) in the example
in “Definition of Fourier Transform” on page 9-2. Remember that f(m,n)
is equal to 1 within the rectangular region and 0 elsewhere. Use a binary
image to represent f(m,n).

f = zeros(30,30);
f(5:24,13:17) = 1;
imshow(f, 'notruesize')

2 Compute and visualize the 30-by-30 DFT of f with these commands.

F = fft2(f);
F2 = log(abs(F));
imshow(F2,[-1 5], 'notruesize'); colormap(jet); colorbar
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Discrete Fourier Transform Computed Without Padding

This plot differs from the Fourier transform displayed in “Visualizing
the Fourier Transform” on page 9-3. First, the sampling of the Fourier
transform is much coarser. Second, the zero-frequency coefficient is
displayed in the upper left corner instead of the traditional location in
the center.

3 To obtain a finer sampling of the Fourier transform, add zero padding to f
when computing its DFT. The zero padding and DFT computation can be
performed in a single step with this command.

F = fft2(f,256,256);

This command zero-pads f to be 256-by-256 before computing the DFT.

imshow(log(abs(F)),[-1 5]); colormap(jet); colorbar



Q Transforms

9-10

Discrete Fourier Transform Computed with Padding

4 The zero-frequency coefficient, however, is still displayed in the upper
left corner rather than the center. You can fix this problem by using
the function fftshift, which swaps the quadrants of F so that the
zero-frequency coefficient is in the center.

F = fft2(f,256,256);F2 = fftshift(F);
imshow(log(abs(F2)),[-1 5]); colormap(jet); colorbar

The resulting plot is identical to the one shown in “Visualizing the Fourier
Transform” on page 9-3.

Applications of the Fourier Transform

This section presents a few of the many image processing-related applications
of the Fourier transform.

Frequency Response of Linear Filters

The Fourier transform of the impulse response of a linear filter gives the
frequency response of the filter. The function freqz2 computes and displays
a filter’s frequency response. The frequency response of the Gaussian
convolution kernel shows that this filter passes low frequencies and
attenuates high frequencies.

h = fspecial('gaussian');
freqz2(h)
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Frequency Response of a Gaussian Filter

See Chapter 8, “Linear Filtering and Filter Design” for more information
about linear filtering, filter design, and frequency responses.

Fast Convolution

A key property of the Fourier transform is that the multiplication of two
Fourier transforms corresponds to the convolution of the associated spatial
functions. This property, together with the fast Fourier transform, forms the
basis for a fast convolution algorithm.

Note The FFT-based convolution method is most often used for large inputs.
For small inputs it is generally faster to use imfilter.

To illustrate, this example performs the convolution of A and B, where A is an
M-by-N matrix and B is a P-by-Q matrix:

1 Create two matrices.

A
B

magic(3);
ones(3);
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2 Zero-pad A and B so that they are at least (M+P-1)-by-(N+Q-1). (Often A
and B are zero-padded to a size that is a power of 2 because fft2 is fastest
for these sizes.) The example pads the matrices to be 8-by-8.

A(8,8) = 0;
B(8,8) = 0;

3 Compute the two-dimensional DFT of A and B using fft2.

4 Multiply the two DFTs together.

5 Compute the inverse two-dimensional DFT of the result using ifft2.
The following code performs steps 3, 4, and 5 in the procedure.

C = ifft2(fft2(A).*fft2(B));

6 Extract the nonzero portion of the result and remove the imaginary part
caused by roundoff error.

C =C(1:5,1:5);
C = real(C)
C =

8.0000 9.0000 15.0000 7.0000 6.0000
11.0000 17.0000 30.0000 19.0000 13.0000
15.0000 30.0000 45.0000 30.0000 15.0000

7.0000 21.0000 30.0000 23.0000 9.0000

4.0000 13.0000 15.0000 11.0000 2.0000

Locating Image Features

The Fourier transform can also be used to perform correlation, which is closely
related to convolution. Correlation can be used to locate features within an
image; in this context correlation is often called template matching.

This example illustrates how to use correlation to locate occurrences of the
letter "a" in an image containing text:

1 Read in the sample image.
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bw = imread('text.png');
2 Create a template for matching by extracting the letter "a" from the image.
a = bw(32:45,88:98);

You can also create the template image by using the interactive version of
imcrop, using the pixval function to determine the coordinates of features
in an image.

The following figure shows both the original image and the template.

imshow(bw) ;
figure, imshow(a);
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Image (left) and the Template to Correlate (right)

3 Compute the correlation of the template image with the original image
by rotating the template image by 180° and then using the FFT-based
convolution technique described in “Fast Convolution” on page 9-11.

(Convolution is equivalent to correlation if you rotate the convolution
kernel by 180°.) To match the template to the image, use the fft2 and
ifft2 functions.

C = real (ifft2(fft2(bw) .* fft2(rot90(a,2),256,256)));

The following image shows the result of the correlation. Bright peaks in
the image correspond to occurrences of the letter.

figure, imshow(C,[]) % Scale image to appropriate display range.
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Correlated Image

4 To view the locations of the template in the image, find the maximum pixel
value and then define a threshold value that is less than this maximum.
The locations of these peaks are indicated by the white spots in the
thresholded correlation image. (To make the locations easier to see in this
figure, the thresholded image has been dilated to enlarge the size of the
points.)

max(C(:))

ans =

68.0000
thresh = 60; % Use a threshold that's a little less than max.
figure, imshow(C > thresh)% Display showing pixels over
threshold.

Correlated, Thresholded Image Showing Template Locations
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Discrete Cosine Transform

The discrete cosine transform (DCT) represents an image as a sum of
sinusoids of varying magnitudes and frequencies. The dct2 function in the
Image Processing Toolbox computes the two-dimensional discrete cosine
transform (DCT) of an image. The DCT has the property that, for a typical
image, most of the visually significant information about the image is
concentrated in just a few coefficients of the DCT. For this reason, the DCT

is often used in image compression applications. For example, the DCT is at
the heart of the international standard lossy image compression algorithm
known as JPEG. (The name comes from the working group that developed the
standard: the Joint Photographic Experts Group.)

The two-dimensional DCT of an M-by-N matrix A is defined as follows.

M-1 N-1
_ n(2m+1p  wn2n+1)g Osp=M-]
qu = oo, E z A cos i cos N DcgsN-1
m=0n=10
x_{lf«l"ﬂ_cf,p=ﬁ u_{l.fJ}TT,q=D
Poo|fa7M, 1spsM-1 T |JN, 12g<N-1

The values BFE‘ are called the DCT coefficients of A. (Note that matrix indices
in MATLAB always start at 1 rather than 0; therefore, the MATLAB matrix

elements A(1,1) and B(1,1) correspond to the mathematical quantities Agp
and B o0, respectively.)

The DCT is an invertible transform, and its inverse is given by

M-1N-1

_ m(2m+1l)p  mi2n+1lyg O=m=M-]
A .= Z E upuqﬂpqms i cos SN ' O<n<N_1
p=0 g=10
I_{y.;ﬂ,p:a u_{l.fJ}TT,q=D
P2 M, 1sp=M-1 ? TN, 1=g=N-1
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The inverse DCT equation can be interpreted as meaning that any M-by-N
matrix A can be written as a sum of MN functions of the form

mi2m+1ip  wlin+1lig Dep=M-1
p% SR T T AN DsgsN-1

These functions are called the basis functions of the DCT. The DCT coefficients

P49, then, can be regarded as the weights applied to each basis function. For
8-by-8 matrices, the 64 basis functions are illustrated by this image.

The 64 Basis Functions of an 8-by-8 Matrix

Horizontal frequencies increase from left to right, and vertical frequencies
increase from top to bottom. The constant-valued basis function at the
upper left is often called the DC basis function, and the corresponding DCT

coefficient By, is often called the DC coefficient.

The DCT Transform Matrix

The Image Processing Toolbox offers two different ways to compute the
DCT. The first method is to use the function dct2. dct2 uses an FFT-based
algorithm for speedy computation with large inputs. The second method is to
use the DCT transform matrix, which is returned by the function dctmtx and
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might be more efficient for small square inputs, such as 8-by-8 or 16-by-16.
The M-by-M transform matrix T is given by

—— p=0 02g=M-1

2  m2g+1ip e M M
[T Gy T lep=M-1, D=g=M-1

For an M-by-M matrix A, T*A is an M-by-M matrix whose columns contain the
one-dimensional DCT of the columns of A. The two-dimensional DCT of A can
be computed as B=T*A*T'. Since T is a real orthonormal matrix, its inverse

is the same as its transpose. Therefore, the inverse two-dimensional DCT of
B is given by T'*B*T.

DCT and Image Compression

In the JPEG image compression algorithm, the input image is divided into
8-by-8 or 16-by-16 blocks, and the two-dimensional DCT is computed for each
block. The DCT coefficients are then quantized, coded, and transmitted. The
JPEG receiver (or JPEG file reader) decodes the quantized DCT coefficients,
computes the inverse two-dimensional DCT of each block, and then puts the
blocks back together into a single image. For typical images, many of the
DCT coefficients have values close to zero; these coefficients can be discarded
without seriously affecting the quality of the reconstructed image.

The example code below computes the two-dimensional DCT of 8-by-8 blocks
in the input image, discards (sets to zero) all but 10 of the 64 DCT coefficients
in each block, and then reconstructs the image using the two-dimensional
inverse DCT of each block. The transform matrix computation method is used.
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I =

I = im2double(I);

T = dctmtx(8);

B =

mask = [1 1 1
1 1 1
1 1 0
1 0O O
0O O O
0O O O
0O O ©O
0O O O

B2 = blkproc(

imshow(I), figure,

OO O0OO0OO0OO0OOo =

imread('cameraman.tif');

0

O OO O0OO0OO0oOOo

blkproc(I,[8 8], 'P1*x*P2',T,

0
0
0
0
0
0
0
0

T
0
0
0
0
0
0
0

0

)

B,[8 8], 'P1.*x',mask);
I2 = blkproc(B2,[8 8], 'P1*x*P2' ,T',T);

Image Caurtesy of MIT

imshow(I2)

O OO O0OO0OO0OOoOo

15

Although there is some loss of quality in the reconstructed image, it is clearly
recognizable, even though almost 85% of the DCT coefficients were discarded.
To experiment with discarding more or fewer coefficients, and to apply this
technique to other images, try running the demo function dctdemo.
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Radon Transform

The radon function in the Image Processing Toolbox computes projections of
an image matrix along specified directions. A projection of a two-dimensional
function f(x,y) is a set of line integrals. The radon function computes the line
integrals from multiple sources along parallel paths, or beams, in a certain
direction. The beams are spaced 1 pixel unit apart. To represent an image,
the radon function takes multiple, parallel-beam projections of the image
from different angles by rotating the source around the center of the image.
The following figure shows a single projection at a specified rotation angle.

¥

4

Sensars

\ Ratafion angle theto

\\ x
.V \
fe ,}}/ \\\ Source

Parallel-Beam Projection at Rotation Angle Theta

/.

Note For information about creating projection data from line integrals along
paths that radiate from a single source, called fan-beam projections, see
“Fan-Beam Projection Data” on page 9-35. To convert parallel-beam projection
data to fan-beam projection data, use the para2fan function.

For example, the line integral of f{x,y) in the vertical direction is the projection
of f(x,y) onto the x-axis; the line integral in the horizontal direction is the
projection of f(x,y) onto the y-axis. The following figure shows horizontal and
vertical projections for a simple two-dimensional function.
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Horizontal and Vertical Projections of a Simple Function

Projections can be computed along any angle [[THETA]]. In general, the
Radon transform of f(x,y) is the line integral of f parallel to the y -axis

Ryixy = -rD fix'cosB -y sinf, x'sinf + 3 cosl) dy'

where

x| _ | cosf sinf||x
3 —zinf cos6||y

The following figure illustrates the geometry of the Radon transform.
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Geomeiry of the Radon Transform

Plotting the Radon Transform
You can compute the Radon transform of an image I for the angles specified in
the vector theta using the radon function with this syntax.

[R,xp] = radon(I,theta);

The columns of R contain the Radon transform for each angle in theta. The
vector xp contains the corresponding coordinates along the x"-axis. The center
pixel of I is defined to be floor((size(I)+1)/2); this is the pixel on the
x’-axis corresponding to x' = 0.
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The commands below compute and plot the Radon transform at 0° and 45° of
an image containing a single square object. xp is the same for all projection
angles.

I = zeros(100,100);

I(25:75, 25:75) = 1;

imshow(I)

[R,xp] = radon(I,[0 45]);

figure; plot(xp,R(:,1)); title('R_{0%0} (x\prime)"')

&0 ! ! ! ' .

40 -

aa

1 1 | 1 | 1 1
-50 80 -<0 20 O 20 40 6O B8]

Radon Transform of a Square Function at 0 Degrees

figure; plot(xp,R(:,2)); title('R_{45%0} (x\prime)")
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Radon Transform of a Square Function at 45 Degrees

Viewing the Radon Transform as an Image

The Radon transform for a large number of angles is often displayed as
an image. In this example, the Radon transform for the square image is
computed at angles from 0° to 180°, in 1° increments.

theta = 0:180;

[R,xp] = radon(I,theta);
imagesc(theta,xp,R);
title('R_{\theta} (X\prime)');
xlabel('\theta (degrees)');
ylabel('X\prime');

set(gca, 'XTick',0:20:180);
colormap(hot);

colorbar
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Radon Transform Using 180 Projections

Using the Radon Transform to Detect Lines

The Radon transform is closely related to a common computer vision operation
known as the Hough transform. You can use the radon function to implement
a form of the Hough transform used to detect straight lines. The steps are

1 Compute a binary edge image using the edge function.

I = fitsread('solarspectra.fts');
I mat2gray(I);

BW = edge(I);

imshow(I), figure, imshow(BW)
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2 Compute the Radon transform of the edge image.

theta = 0:179;

[R,xp] = radon(BW,theta);

figure, imagesc(theta, xp, R); colormap(hot);
xlabel('\theta (degrees)'); ylabel('x\prime');
title('R_{\theta} (x\prime)');

colorbar
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Radon Transform of an Edge Image

3 Find the locations of strong peaks in the Radon transform matrix. The
locations of these peaks correspond to the locations of straight lines in the
original image.

In the following figure, the strongest peaks in R correspond to # = 1% and

x" = —80. The line perpendicular to that angle and located at x* = —80

is shown below, superimposed in red on the original image. The Radon
transform geometry is shown in black. Notice that the other strong lines
parallel to the red line also appear as peaks at 8 = 17 in the transform. Also,
the lines perpendicular to this line appear as peaks at 8 = 917,

g0

a0

70

50
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Radon Transform Geomeiry and the Strongest Peak (Red)

Inverse Radon Transform

The iradon function performs the inverse Radon transform, which is
commonly used in tomography applications. This transform inverts the Radon
transform (which was introduced in the previous section), and can therefore
be used to reconstruct images from projection data.

As described in “Radon Transform” on page 9-19, given an image I and a
set of angles theta, the radon function can be used to calculate the Radon
transform.

R = radon(I,theta);

The function iradon can then be called to reconstruct the image I.

IR = iradon(R,theta);

In the example above, projections are calculated from the original image I.
In most application areas, there is no original image from which projections
are formed. For example, in X-ray absorption tomography, projections are
formed by measuring the attenuation of radiation that passes through a
physical specimen at different angles. The original image can be thought of
as a cross section through the specimen, in which intensity values represent
the density of the specimen. Projections are collected using special purpose
hardware, and then an internal image of the specimen is reconstructed by
iradon. This allows for noninvasive imaging of the inside of a living body or
another opaque object.

9-27



9 Transforms

9-28

iradon reconstructs an image from parallel-beam projections. In
parallel-beam geometry, each projection is formed by combining a set of line
integrals through an image at a specific angle.

The following figure illustrates how parallel-beam geometry is applied in
X-ray absorption tomography. Note that there is an equal number of n
emitters and n sensors. Each sensor measures the radiation emitted from its
corresponding emitter, and the attenuation in the radiation gives a measure
of the integrated density, or mass, of the object. This corresponds to the line
integral that is calculated in the Radon transform.

The parallel-beam geometry used in the figure is the same as the geometry
that was described in “Radon Transform” on page 9-19. f(x,y) denotes the

brightness of the image and k Bi""f']is the projection at angle theta.
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Parallel-Beam Projections Through an Obiject

Another geometry that is commonly used is fan-beam geometry, in which
there is one source and n sensors. For more information, see “Fan-Beam
Projection Data” on page 9-35. To convert parallel-beam projection data into
fan-beam projection data, use the para2fan function.

Improving the Results

iradon uses the filtered backprojection algorithm to compute the inverse
Radon transform. This algorithm forms an approximation of the image I
based on the projections in the columns of R. A more accurate result can be
obtained by using more projections in the reconstruction. As the number of
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projections (the length of theta) increases, the reconstructed image IR more
accurately approximates the original image I. The vector theta must contain
monotonically increasing angular values with a constant incremental angle
A[[THETA]]. When the scalar A[[THETA]] is known, it can be passed to
iradon instead of the array of theta values. Here is an example.

IR = iradon(R,Dtheta);

The filtered backprojection algorithm filters the projections in R and then
reconstructs the image using the filtered projections. In some cases, noise can
be present in the projections. To remove high frequency noise, apply a window
to the filter to attenuate the noise. Many such windowed filters are available
in iradon. The example call to iradon below applies a Hamming window to
the filter. See the iradon reference page for more information.

IR = iradon(R,theta, 'Hamming');

iradon also enables you to specify a normalized frequency, D, above which the
filter has zero response. D must be a scalar in the range [0,1]. With this option,
the frequency axis is rescaled so that the whole filter is compressed to fit into
the frequency range [0,D]. This can be useful in cases where the projections
contain little high-frequency information but there is high-frequency noise.
In this case, the noise can be completely suppressed without compromising
the reconstruction. The following call to iradon sets a normalized frequency
value of 0.85.

IR = iradon(R,theta,0.85);

Example: Reconstructing an Image from Parallel
Projection Data

The commands below illustrate how to reconstruct an image from parallel
projection data. The test image is the Shepp-Logan head phantom, which
can be generated by the Image Processing Toolbox function phantom. The
phantom image illustrates many of the qualities that are found in real-world
tomographic imaging of human heads. The bright elliptical shell along the
exterior is analogous to a skull, and the many ellipses inside are analogous
to brain features.
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1 Create a Shepp-Logan head phantom image.

P = phantom(256);
imshow(P)

2 Compute the Radon transform of the phantom brain for three different
sets of theta values. R1 has 18 projections, R2 has 36 projections, and R3
has 90 projections.

thetal = 0:10:170; [R1,xp] = radon(P,thetal);
theta2 0:5:175; [R2,xp] radon(P,theta2);
theta3 0:2:178; [R3,xp] radon(P,theta3);

3 Display a plot of one of the Radon transforms of the Shepp-Logan head
phantom. The following figure shows R3, the transform with 90 projections.

figure, imagesc(theta3,xp,R3); colormap(hot); colorbar
xlabel('\theta'); ylabel('x\prime');
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Radon Transform of Head Phantom Using 90 Projections

Note how some of the features of the input image appear in this image of
the transform. The first column in the Radon transform corresponds to a
projection at 0° that is integrating in the vertical direction. The centermost
column corresponds to a projection at 90°, which is integrating in the
horizontal direction. The projection at 90° has a wider profile than the
projection at 0° due to the larger vertical semi-axis of the outermost ellipse
of the phantom.
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4 Reconstruct the head phantom image from the projection data created in
step 2 and display the results.

I1 iradon(R1,10);
I2 iradon(R2,5);
I3 = iradon(R3,2);
imshow(I1)

figure, imshow(I2)
figure, imshow(I3)

The following figure shows the results of all three reconstructions. Notice
how image I1, which was reconstructed from only 18 projections, is the
least accurate reconstruction. Image I2, which was reconstructed from 36
projections, is better, but it is still not clear enough to discern clearly the
small ellipses in the lower portion of the image. I3, reconstructed using
90 projections, most closely resembles the original image. Notice that
when the number of projections is relatively small (as in I1 and I2), the
reconstruction can include some artifacts from the back projection.
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Inverse Radon Transforms of the Shepp-Logan Head Phantom
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Fan-Beam Projection Data

The fanbeam function in the Image Processing Toolbox computes projections of
an image matrix along specified directions. A projection of a two-dimensional
function f(x,y) is a set of line integrals. The fanbeam function computes the
line integrals along paths that radiate from a single source, forming a fan
shape. To represent an image, the fanbeam function takes multiple projections
of the image from different angles by rotating the source around the center

of the image. The following figure shows a single fan-beam projection at a
specified rotation angle.

e

Sensors

Rofafion angle theta

Vertex

Fan-Beam Projection at Rotation Angle Theta
This section

¢ Describes how to use the fanbeam function to generate fan-beam projection
data

® Describes how to reconstruct an image from fan-beam projection data

¢ Shows an example that creates a fan-beam projection of an image and then
reconstructs the image from the fan-beam projection data
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Note For information about creating projection data from line integrals along
parallel paths, see “Radon Transform” on page 9-19. To convert fan-beam
projection data to parallel-beam projection data, use the fan2para function.

Computing Fan-Beam Projection Data

To compute fan-beam projection data, use the fanbeam function. You specify
as arguments an image and the distance between the vertex of the fan-beam
projections and the center of rotation (the center pixel in the image). The
fanbeam function determines the number of beams, based on the size of the
image and the settings of fanbeam parameters.

The FanSensorGeometry parameter specifies how sensors are aligned. If
you specify the value 'arc' for FanSensorGeometry (the default), fanbeam
positions the sensors along an arc, spacing the sensors at 1 degree intervals.
Using the FanSensorSpacing parameter, you can control the distance
between sensors by specifying the angle between each beam. If you specify
the value 'line' for FanSensorGeometry parameter, fanbeam position
sensors along a straight line, rather than an arc. With 'line' geometry, the
FanSensorSpacing parameter specifies the distance between the sensors,
in pixels, along the x” axis.

fanbeam takes projections at different angles by rotating the source around
the center pixel at 1 degree intervals. Using the FanRotationIncrement
parameter you can specify a different rotation angle increment.

The following figures illustrate both these geometries. The first figure
illustrates geometry used by the fanbeam function when FanSensorGeometry
is set to 'arc' (the default). Note how you specify the distance between
sensors by specifying the angular spacing of the beams.
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FanSensarapacing, AY

measured in deqrees

Sensars

Fan rotafion angle

Vertex

Fan-Beam Projection with Arc Geometry

The following figure illustrates the geometry used by the fanbeam function
when FanSensorGeometry is set to '1line'. In this figure, note how you
specify the position of the sensors by specifying the distance between them in
pixels along the x’ axis.
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Fan-Beam Projection with Line Geometry

Reconstructing an Image from Fan-Beam Projection
Data

To reconstruct an image from fan-beam projection data, use the ifanbeam
function. With this function, you specify as arguments the projection data and
the distance between the vertex of the fan-beam projections and the center

of rotation when the projection data was created. For example, this code
recreates the image I from the projection data P and distance D.

I = ifanbeam(P,D);

By default, the ifanbeam function assumes that the fan-beam projection data
was created using the arc fan sensor geometry, with beams spaced at 1 degree
angles and projections taken at 1 degree increments over a full 360 degree
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range. As with the fanbeam function, you can use ifanbeam parameters to
specify other values for these characteristics of the projection data. Use the
same values for these parameters that were used when the projection data
was created. For more information about these parameters, see “Computing
Fan-Beam Projection Data” on page 9-36.

The ifanbeam function converts the fan-beam projection data to parallel-beam
projection data with the fan2para function, and then calls the iradon
function to perform the image reconstruction. For this reason, the ifanfeam
function supports certain iradon parameters, which it passes to the iradon
function. See “Inverse Radon Transform” on page 9-27 for more information
about the iradon function.

Working with Fan-Beam Projection Data

The commands below illustrate how to use fanbeam and ifanbeam to form
projections from a sample image and then reconstruct the image from

the projections. The test image is the Shepp-Logan head phantom, which
can be generated by the Image Processing Toolbox function phantom. The
phantom image illustrates many of the qualities that are found in real-world
tomographic imaging of human heads.

1 Generate the test image and display it.

P = phantom(256);
imshow(P)

2 Compute fan-beam projection data of the test image, using the
FanSensorSpacing parameter to vary the sensor spacing. The example
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uses the fanbeam arc geometry, so you specify the spacing between sensors
by specifying the angular spacing of the beams. The first call spaces the
beams at 2 degrees; the second at 1 degree; and the third at 0.25 degrees.
In each call, the distance between the center of rotation and vertex of the
projections is constant at 250 pixels. In addition, fanbeam rotates the
projection around the center pixel at 1 degree increments.

D = 250;

dsensori = 2;
F1 = fanbeam(P,D, 'FanSensorSpacing',dsensori);

dsensor2 = 1;
F2 = fanbeam(P,D, 'FanSensorSpacing',dsensor2);

dsensor3d = 0.25
[F3, sensor_pos3, fan_rot_angles3] = fanbeam(P,D,...
'FanSensorSpacing',dsensor3);

3 Plot the projection data F3. Because fanbeam calculates projection data
at rotation angles from 0 to 360 degrees, the same patterns occur at an
offset of 180 degrees. The same features are being sampled from both sides.
Compare this plot to the plot of the parallel-beam projection data of the
head phantom using 90 projections in “Example: Reconstructing an Image
from Parallel Projection Data” on page 9-30.

figure, imagesc(fan_rot_angles3, sensor_pos3, F3)
colormap(hot); colorbar

xlabel('Fan Rotation Angle (degrees)')
ylabel('Fan Sensor Position (degrees)')
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Reconstruct the image from the fan-beam projection data using ifanbeam.
In each reconstruction, match the fan sensor spacing with the spacing
used when the projection data was created in step 2. The example uses the
OutputSize parameter to constrain the output size of each reconstruction
to be the same as the size of the original image |P].

output_size = max(size(P));

Ifan1 = ifanbeam(F1,D,
‘FanSensorSpacing',dsensori, 'OutputSize',output_size);
figure, imshow(Ifant)

Ifan2 = ifanbeam(F2,D,
‘FanSensorSpacing',dsensor2, 'OutputSize',output_size);
figure, imshow(Ifan2)

Ifan3 = ifanbeam(F3,D,

‘FanSensorSpacing',dsensor3, 'OutputSize',output_size);
figure, imshow(Ifan3)

The following figure shows the result of each transform. Note how the
quality of the reconstruction gets better as the number of beams in the
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projection increases. The first image, Ifan1, was created using 2 degree
spacing of the beams; the second image, ifan2, was created using 1 degree
spacing of the beams; the third image, ifan3, was created using 0.25
spacing of the beams.

Hanl HHan2 Ifan3

Reconstructions of the Head Phantom Image from Fan-Beam Projections
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Morphology is a broad set of image processing operations that process images
based on shapes. Morphological operations apply a structuring element

to an input image, creating an output image of the same size. The most
basic morphological operations are dilation and erosion. In a morphological
operation, the value of each pixel in the output image is based on a comparison
of the corresponding pixel in the input image with its neighbors. By choosing
the size and shape of the neighborhood, you can construct a morphological
operation that is sensitive to specific shapes in the input image.

This chapter describes the Image Processing Toolbox morphological functions.
You can use these functions to perform common image processing tasks, such
as contrast enhancement, noise removal, thinning, skeletonization, filling,
and segmentation.

Dilation and Erosion (p. 10-3) Defines the two fundamental
morphological operations, dilation
and erosion, and some of the
morphological image processing
operations that are based on
combinations of these operations

Morphological Reconstruction Describes morphological

(p. 10-18) reconstruction and the toolbox
functions that use this type of
processing

Distance Transform (p. 10-37) Describes how to use the bwdist

function to compute the distance
transform of an image
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Objects, Regions, and Feature Describes functions that return
Measurement (p. 10-40) information about a binary image

Lookup Table Operations (p. 10-44)  Describes functions that perform
lookup table operations
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Dilation and Erosion

Dilation and erosion are two fundamental morphological operations. Dilation
adds pixels to the boundaries of objects in an image, while erosion removes
pixels on object boundaries. The number of pixels added or removed from the
objects in an image depends on the size and shape of the structuring element
used to process the image.

The following sections

® Provide important background information about how the dilation and
erosion functions operate

® Describe structuring elements and how to create them

¢ Describe how to perform a morphological dilation

® Describe how to perform a morphological erosion

® Describe some of the common operations that are based on dilation and
erosion

® Describe toolbox functions that are based on dilation and erosion

To view an extended example that uses morphological processing to solve
an image processing problem, see the Image Processing Toolbox watershed
segmentation demo.

Understanding Dilation and Erosion

In the morphological dilation and erosion operations, the state of any

given pixel in the output image is determined by applying a rule to the
corresponding pixel and its neighbors in the input image. The rule used to
process the pixels defines the operation as a dilation or an erosion. This table
lists the rules for both dilation and erosion.
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Rules for Dilation and Erosion

Operation | Rule

Dilation The value of the output pixel is the maximum value of all
the pixels in the input pixel’s neighborhood. In a binary
image, if any of the pixels is set to the value 1, the output
pixel is set to 1.

Erosion The value of the output pixel is the minimum value of all the
pixels in the input pixel’s neighborhood. In a binary image,
if any of the pixels is set to 0, the output pixel is set to 0.

The following figure illustrates the dilation of a binary image. Note how the
structuring element defines the neighborhood of the pixel of interest, which is
circled. (See “Structuring Elements” on page 10-6 for more information.) The
dilation function applies the appropriate rule to the pixels in the neighborhood
and assigns a value to the corresponding pixel in the output image. In the
figure, the morphological dilation function sets the value of the output pixel to
1 because one of the elements in the neighborhood defined by the structuring
element is on.
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Morphological Dilation of a Binary Image

The following figure illustrates this processing for a grayscale image. The
figure shows the processing of a particular pixel in the input image. Note
how the function applies the rule to the input pixel’s neighborhood and uses
the highest value of all the pixels in the neighborhood as the value of the
corresponding pixel in the output image.
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Morphological Dilation of a Grayscale Image

Processing Pixels at Image Borders (Padding Behavior)

Morphological functions position the origin of the structuring element, its
center element, over the pixel of interest in the input image. For pixels at
the edge of an image, parts of the neighborhood defined by the structuring

element can extend past the border of the image.

To process border pixels, the morphological functions assign a value to these
undefined pixels, as if the functions had padded the image with additional
rows and columns. The value of these padding pixels varies for dilation
and erosion operations. The following table describes the padding rules for
dilation and erosion for both binary and grayscale images.
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Rules for Padding Images

Operation Rule

Dilation Pixels beyond the image border are assigned the minimum
value afforded by the data type.

For binary images, these pixels are assumed to be set to
0. For grayscale images, the minimum value for uint8
images is 0.

Erosion Pixels beyond the image border are assigned the maximum
value afforded by the data type.

For binary images, these pixels are assumed to be set to
1. For grayscale images, the maximum value for uint8
images is 255.

Note By using the minimum value for dilation operations and the maximum
value for erosion operations, the toolbox avoids border effects, where regions
near the borders of the output image do not appear to be homogeneous with
the rest of the image. For example, if erosion padded with a minimum value,
eroding an image would result in a black border around the edge of the output
image.

Structuring Elements

An essential part of the dilation and erosion operations is the structuring
element used to probe the input image. A structuring element is a matrix
consisting of only 0’s and 1’s that can have any arbitrary shape and size. The
pixels with values of 1 define the neighborhood.

Two-dimensional, or flat, structuring elements are typically much smaller
than the image being processed. The center pixel of the structuring element,
called the origin, identifies the pixel of interest -- the pixel being processed.
The pixels in the structuring element containing 1’s define the neighborhood
of the structuring element. These pixels are also considered in dilation or
erosion processing.
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Three-dimensional, or nonflat, structuring elements use 0’s and 1’s to define
the extent of the structuring element in the x- and y-planes and add height
values to define the third dimension.

The Origin of a Structuring Element

The morphological functions use this code to get the coordinates of the origin
of structuring elements of any size and dimension.

origin = floor((size(nhood)+1)/2)

(In this code nhood is the neighborhood defining the structuring element.
Because structuring elements are MATLAB objects, you cannot use the size of
the STREL object itself in this calculation. You must use the STREL getnhood
method to retrieve the neighborhood of the structuring element from the
STREL object. For information about other STREL object methods, see the
strel function reference page.)

For example, the following illustrates a diamond-shaped structuring element.

Structuring Element - Origin
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Origin of a Diamond-Shaped Structuring Element

Creating a Structuring Element

The toolbox dilation and erosion functions accept structuring element objects,
called STRELs. You use the strel function to create STRELs of any arbitrary
size and shape. The strel function also includes built-in support for many
common shapes, such as lines, diamonds, disks, periodic lines, and balls.
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Note You typically choose a structuring element the same size and shape as
the objects you want to process in the input image. For example, to find lines
in an image, create a linear structuring element.

For example, this code creates a flat, diamond-shaped structuring element.

se = strel('diamond',3)
se =

Flat STREL object containing 25 neighbors.

Decomposition: 3 STREL objects containing a total of 13 neighbors

Neighborhood:
0 0 0 1 0 0 0
0 0 1 1 1 0 0
0 1 1 1 1 1 0
1 1 1 1 1 1 1
0 1 1 1 1 1 0
0 0 1 1 1 0 0
0 0 0 1 0 0 0

Structuring Element Decomposition

To enhance performance, the strel function might break structuring elements
into smaller pieces, a technique known as structuring element decomposition.

For example, dilation by an 11-by-11 square structuring element can be
accomplished by dilating first with a 1-by-11 structuring element, and
then with an 11-by-1 structuring element. This results in a theoretical
speed improvement of a factor of 5.5, although in practice the actual speed
improvement is somewhat less.

Structuring element decompositions used for the 'disk' and 'ball' shapes
are approximations; all other decompositions are exact. Decomposition is not
used with an arbitrary structuring element unless it is a flat structuring
element whose neighborhood is all 1’s.
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To view the sequence of structuring elements used in a decomposition, use the
STREL getsequence method. The getsequence function returns an array of
the structuring elements that form the decomposition. For example, here are
the structuring elements created in the decomposition of a diamond-shaped
structuring element.

sel = strel('diamond',4)

sel =

Flat STREL object containing 41 neighbors.

Decomposition: 3 STREL objects containing a total of 13 neighbors

Neighborhood:
0 0 0 0 1 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 0
0 0 1 1 1 1 1 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 1 0 0 0 0

seq = getsequence(sel)
seq =
3x1 array of STREL objects

seq(1)
ans =
Flat STREL object containing 5 neighbors.

Neighborhood:
0 1 0
1 1 1
0 1 0

seq(2)

ans =

Flat STREL object containing 4 neighbors.

Neighborhood:
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0 1 0

1 0 1

0 1 0
seq(3)

ans =
Flat STREL object containing 4 neighbors.

Neighborhood:
0 0 1 0 0
0 0 0 0 0
1 0 0 0 1
0 0 0 0 0
0 0 1 0 0

Dilating an Image
To dilate an image, use the imdilate function. The imdilate function accepts
two primary arguments:

¢ The input image to be processed (grayscale, binary, or packed binary image)

¢ A structuring element object, returned by the strel function, or a binary
matrix defining the neighborhood of a structuring element

imdilate also accepts two optional arguments: PADOPT and PACKOPT.

The PADOPT argument affects the size of the output image. The PACKOPT
argument identifies the input image as packed binary. (Packing is a method of
compressing binary images that can speed up the processing of the image. See
the bwpack reference page for information.)

This example dilates a simple binary image containing one rectangular object.

BW = zeros(9,10);

BW(4:6,4:7) = 1

BW =
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0 0 0
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To expand all sides of the foreground component, the example uses a 3-by-3
square structuring element object. (For more information about using the
strel function, see “Structuring Elements” on page 10-6.)

SE = strel('square',3)
SE =

Flat STREL object containing 3 neighbors.

Neighborhood:
1 1 1
1 1 1
1 1 1

To dilate the image, pass the image BW and the structuring element SE to
the imdilate function. Note how dilation adds a rank of 1’s to all sides of
the foreground object.

BW2 = imdilate(BW,SE)

Bz =
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== R = =]
= = R e = =]
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Eroding an Image

To erode an image, use the imerode function. The imerode function accepts
two primary arguments:
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® The input image to be processed (grayscale, binary, or packed binary image)

® A structuring element object, returned by the strel function, or a binary
matrix defining the neighborhood of a structuring element

imerode also accepts three optional arguments: PADOPT, PACKOPT, and M.

The PADOPT argument affects the size of the output image. The PACKOPT
argument identifies the input image as packed binary. If the image is packed
binary, M identifies the number of rows in the original image. (Packing is a
method of compressing binary images that can speed up the processing of the
image. See the bwpack reference page for more information.)

The following example erodes the binary image circbw.tif:
1 Read the image into the MATLAB workspace.
BW1 = imread('circbw.tif');

2 Create a structuring element. The following code creates a diagonal
structuring element object. (For more information about using the strel
function, see “Structuring Elements” on page 10-6.)

SE = strel('arbitrary',eye(5));
SE=

Flat STREL object containing 5 neighbors.

Neighborhood:
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

3 Call the imerode function, passing the image BW and the structuring
element SE as arguments.

BW2 = imerode(BW1,SE);

Notice the diagonal streaks on the right side of the output image. These
are due to the shape of the structuring element.
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imshow (BW1)
figure, imshow(BW2)

Original Image Eroded Image

Combining Dilation and Erosion

Dilation and erosion are often used in combination to implement image
processing operations. For example, the definition of a morphological opening
of an image is an erosion followed by a dilation, using the same structuring
element for both operations. The related operation, morphological closing of
an image, is the reverse: it consists of dilation followed by an erosion with the
same structuring element.

The following section uses imdilate and imerode to illustrate how to
implement a morphological opening. Note, however, that the toolbox already
includes the imopen function, which performs this processing. The toolbox
includes functions that perform many common morphological operations. See
“Dilation- and Erosion-Based Functions” on page 10-15 for a complete list.

Morphological Opening

You can use morphological opening to remove small objects from an image
while preserving the shape and size of larger objects in the image. For
example, you can use the imopen function to remove all the circuit lines
from the original circuit image, circbw.tif, creating an output image that
contains only the rectangular shapes of the microchips.

To morphologically open the image, perform these steps:
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1 Read the image into the MATLAB workspace.

BW1 = imread('circbw.tif');

2 Create a structuring element.

SE = strel('rectangle',[40 30]);

The structuring element should be large enough to remove the lines when
you erode the image, but not large enough to remove the rectangles. It
should consist of all 1’s, so it removes everything but large contiguous
patches of foreground pixels.

3 Erode the image with the structuring element.

BW2 = imerode(BW1,SE);
imshow (BW2)

This removes all the lines, but also shrinks the rectangles.

4 To restore the rectangles to their original sizes, dilate the eroded image
using the same structuring element, SE.

BW3 = imdilate(BW2,SE);
imshow (BW3)
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Dilation- and Erosion-Based Functions

This section describes two common image processing operations that are
based on dilation and erosion:

e Skeletonization

® Perimeter determination
This table lists other functions in the toolbox that perform common
morphological operations that are based on dilation and erosion. For more

information about these functions, see their reference pages.

Dilation- and Erosion-Based Functions

Function Morphological Definition

bwhitmiss Logical AND of an image, eroded with one structuring
element, and the image’s complement, eroded with a second
structuring element.

imbothat Subtracts the original image from a morphologically closed
version of the image. Can be used to find intensity troughs
in an image.

imclose Dilates an image and then erodes the dilated image using
the same structuring element for both operations.
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Dilation- and Erosion-Based Functions (Continued)

Function Morphological Definition

imopen Erodes an image and then dilates the eroded image using
the same structuring element for both operations.

imtophat Subtracts a morphologically opened image from the original
image. Can be used to enhance contrast in an image.

Skeletonization

To reduce all objects in an image to lines, without changing the essential
structure of the image, use the bwmorph function. This process is known as
skeletonization.

BW1 = imread('circbw.tif');
BW2 = bwmorph(BW1, 'skel',Inf);
imshow (BW1)

figure, imshow(BW2)

Original Image Skeletonization of Image
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Perimeter Determination
The bwperim function determines the perimeter pixels of the objects in a

binary image. A pixel is considered a perimeter pixel if it satisfies both of
these criteria:

¢ The pixel is on.

¢ One (or more) of the pixels in its neighborhood is off.

For example, this code finds the perimeter pixels in a binary image of a
circuit board.

BW1 imread('circbw.tif');
BW2 bwperim(BW1) ;

imshow (BW1)

figure, imshow(BW2)

Original Image Perimefers Determined
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Morphological Reconstruction

Morphological reconstruction is another major part of morphological image
processing. Based on dilation, morphological reconstruction has these unique
properties:

® Processing is based on two images, a marker and a mask, rather than one
image and a structuring element.

® Processing repeats until stability; i.e., the image no longer changes.

® Processing is based on the concept of connectivity, rather than a structuring
element.

This section

¢ Provides background information about morphological reconstruction and
describes how to use the imreconstruct function

¢ Describes how pixel connectivity affects morphological reconstruction

® Describes how to use the imfill function, which is based on morphological
reconstruction

® Describes a group of functions, all based on morphological reconstruction,
that process image extrema, i.e., the areas of high and low intensity in
images

Marker and Mask

Morphological reconstruction processes one image, called the marker, based
on the characteristics of another image, called the mask. The high points, or
peaks, in the marker image specify where processing begins. The processing
continues until the image values stop changing.

To illustrate morphological reconstruction, consider this simple image. It

contains two primary regions, the blocks of pixels containing the values 14
and 18. The background is primarily all set to 10, with some pixels set to 11.
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To morphologically reconstruct this image, perform these steps:

1 Create a marker image. As with the structuring element in dilation and

10;
10;
107
107
107
10;
10;
10;
10;
10]:

erosion, the characteristics of the marker image determine the processing

performed in morphological reconstruction. The peaks in the marker image
should identify the location of objects in the mask image that you want to

emphasize.

One way to create a marker image is to subtract a constant from the mask
image, using imsubtract.

marker
marker

2 Call the imreconstruct function to morphologically reconstruct the image.

8
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imsubtract(A,2)
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In the output image, note how all the intensity fluctuations except the

intensity peak have been removed.

recon

imreconstruct(marker, mask)

0 00 00 00 O 0 0 00 0
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recon =
10 10 10 10 10 10 10 10 10 10
10 12 12 12 10 10 10 10 10 10
10 12 12 12 10 10 10 10 10 10
10 12 12 12 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 16 16 16 10 10
10 10 10 10 10 16 16 16 10 10
10 10 10 10 10 16 16 16 10 10
10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10

Understanding Morphological Reconstruction

Morphological reconstruction can be thought of conceptually as repeated
dilations of the marker image until the contour of the marker image fits
under the mask image. In this way, the peaks in the marker image “spread
out,” or dilate.

This figure illustrates this processing in 1-D. Each successive dilation is
constrained to lie underneath the mask. When further dilation ceases to
change the image, processing stops. The final dilation is the reconstructed
image. (Note: the actual implementation of this operation in the toolbox is
done much more efficiently. See the imreconstruct reference page for more
details.) The figure shows the successive dilations of the marker.
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Pixel Connectivity

Morphological processing starts at the peaks in the marker image and
spreads throughout the rest of the image based on the connectivity of the
pixels. Connectivity defines which pixels are connected to other pixels. A set
of pixels in a binary image that form a connected group is called an object or a
connected component.

For example, this binary image contains one foreground object--all the
pixels that are set to 1. If the foreground is 4-connected, the image has one
background object, and all the pixels are set to 0. However, if the foreground
is 8-connected, the foreground makes a closed loop and the image has two
separate background objects: the pixels in the loop and the pixels outside
the loop.
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OO0 -+ 000—=+0
oo+~ 000—~0
oo -+ 000—=-0
OO O0OO0OO0OO0OOoOOo
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OO0 2+ A4 a4 a a0
OO0 + 4 a4 apo

Defining Connectivity in an Image

The following table lists all the standard two- and three-dimensional
connectivities supported by the toolbox. See these sections for more
information:

® “Choosing a Connectivity” on page 10-24

® “Specifying Custom Connectivities” on page 10-24
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Supported Connectivities

Two-Dimensional
Connectivities

4-connected

Pixels are connected if their edges touch.
This means that a pair of adjoining pixels are
part of the same object only if they are both
on and are connected along the horizontal or
vertical direction.

8-connected

Pixels are connected if their edges or corners
touch. This means that if two adjoining pixels
are on, they are part of the same object,
regardless of whether they are connected
along the horizontal, vertical, or diagonal
direction.

¥

w 4
¥

Three-Dimensional

Connectivities
6-connected Pixels are connected if their faces touch. b foces
18-connected Pixels are connected if their faces or edges b foces +
touch. 12 edges
26-connected Pixels are connected if their faces, edges, or b foces +
corners touch. 12 eges +
B comers
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Choosing a Connectivity

The type of neighborhood you choose affects the number of objects found in
an image and the boundaries of those objects. For this reason, the results
of many morphology operations often differ depending upon the type of
connectivity you specify.

For example, if you specify a 4-connected neighborhood, this binary image
contains two objects; if you specify an 8-connected neighborhood, the image
has one object.

o OO oo
oo =+ =0
OO =+ =20
- = O O O
- =4 O OO
o O o oo

Specifying Custom Connectivities

You can also define custom neighborhoods by specifying a 3-by-3-by-...-by-3
array of 0’s and 1’s. The 1-valued elements define the connectivity of the
neighborhood relative to the center element.

For example, this array defines a “North/South” connectivity that has the
effect of breaking up an image into independent columns.

CONN = 010; 010; 010 ]
CONN =

0 1 0

0 1 0

0 1 0

Note Connectivity arrays must be symmetric about their center element.
Also, you can use a 2-D connectivity array with a 3-D image; the connectivity
affects each "page" in the 3-D image.

Flood-Fill Operations

The imfill function performs a flood-fill operation on binary and grayscale
images. For binary images, imfill changes connected background pixels (0’s)
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to foreground pixels (1’s), stopping when it reaches object boundaries. For
grayscale images, imfill brings the intensity values of dark areas that are
surrounded by lighter areas up to the same intensity level as surrounding
pixels. (In effect, imfill removes regional minima that are not connected to
the image border. See “Finding Areas of High or Low Intensity” on page 10-29
for more information.) This operation can be useful in removing irrelevant
artifacts from images.

This section includes information about

® Specifying the connectivity in flood-fill operations
® Specifying the starting point for binary image fill operations

¢ Filling holes in binary or grayscale images

Specifying Connectivity
For both binary and grayscale images, the boundary of the fill operation is
determined by the connectivity you specify.

Note imfill differs from the other object-based operations in that it operates
on background pixels. When you specify connectivity with imfill, you are
specifying the connectivity of the background, not the foreground.

The implications of connectivity can be illustrated with this matrix.

BW = [

cOcooooooo
[« 3N = QN )
co—~00O0 2O
co—~-000-2oO
co—~~00O0 2O
OO0 22 a0
cOcooooooo
ooo0ooo0oo0o0o0

)

If the background is 4-connected, this binary image contains two separate
background elements (the part inside the loop and the part outside). If the
background is 8-connected, the pixels connect diagonally, and there is only
one background element.
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Specifying the Starting Point

For binary images, you can specify the starting point of the fill operation by
passing in the location subscript or by using imfill in interactive mode,
selecting starting pixels with a mouse. See the reference page for imfill for
more information about using imfill interactively.

For example, if you call imfill, specifying the pixel BW(4,3) as the starting
point, imfill only fills the inside of the loop because, by default, the
background is 4-connected.

imfill(BW,[4 3])

ans

Ocoo0oo0oo0oo0oOo.l
OO =22 a0
OO = 2 a0
OO =22 aaaaa0
OO 22220
OO0 =20
Ocooooooo
cooooooo

If you specify the same starting point, but use an 8-connected background
connectivity, imfill fills the entire image.

imfill(BW,[4 3],8)

ans

- 4 a4 g g g aa
- a4 a4 4O 4a a4 a
—_ A A A A A A A
_ 4 a4 O g a4 a
—_ a4 a4 4O 4a a4 a
—_ a4 a4 O g a4 a
—_ a4 a4 4O 4a a4 a
- a4 a4 O g a4 a

Filling Holes

A common use of the flood-fill operation is to fill holes in images. For example,
suppose you have an image, binary or grayscale, in which the foreground
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objects represent spheres. In the image, these objects should appear as
disks, but instead are donut shaped because of reflections in the original
photograph. Before doing any further processing of the image, you might
want to first fill in the “donut holes” using imfill.

Because the use of flood-fill to fill holes is so common, imfill includes special
syntax to support it for both binary and grayscale images. In this syntax,
you just specify the argument 'holes'; you do not have to specify starting
locations in each hole.

To illustrate, this example fills holes in a grayscale image of a spinal column.

[X,map] = imread('spine.tif');
I = ind2gray(X,map);

Ifill = imfill(I, 'holes');
imshow(I);figure, imshow(Ifill)

Original After Filling Hales

Finding Peaks and Valleys

Grayscale images can be thought of in three dimensions: the x- and y-axes
represent pixel positions and the z-axis represents the intensity of each pixel.
In this interpretation, the intensity values represent elevations, as in a
topographical map. The areas of high intensity and low intensity in an image,
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10-28

peaks and valleys in topographical terms, can be important morphological
features because they often mark relevant image objects.

For example, in an image of several spherical objects, points of high intensity
could represent the tops of the objects. Using morphological processing, these
maxima can be used to identify objects in an image.

This section covers these topics:

* “Terminology” on page 10-28

¢ “Understanding the Maxima and Minima Functions” on page 10-29
* “Finding Areas of High or Low Intensity” on page 10-29

® “Suppressing Minima and Maxima” on page 10-31

® “Imposing a Minimum” on page 10-33

Terminology
This section uses the following terms.
Term Definition
global maxima Highest regional maxima in the image. See the
entry for regional maxima in this table for more
information.
global minima Lowest regional minima in the image. See the
entry for regional minima in this table for more
information.
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Term Definition

regional maxima Connected set of pixels of constant intensity
from which it is impossible to reach a point with
higher intensity without first descending; that is,
a connected component of pixels with the same
intensity value, ¢, surrounded by pixels that all
have a value less than ¢.

regional minima Connected set of pixels of constant intensity
from which it is impossible to reach a point with
lower intensity without first ascending; that is,
a connected component of pixels with the same
intensity value, ¢, surrounded by pixels that all
have a value greater than ¢.

Understanding the Maxima and Minima Functions

An image can have multiple regional maxima or minima but only a single
global maximum or minimum. Determining image peaks or valleys can be
used to create marker images that are used in morphological reconstruction.

This figure illustrates the concept in 1-D.

Reqinnol moxima # Global moximum

IS
-

A -

Regional minima Global minimum

Finding Areas of High or Low Intensity
The toolbox includes functions that you can use to find areas of high or low
intensity in an image:
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® The imregionalmax and imregionalmin functions identify all regional
minima or maxima.

® The imextendedmax and imextendedmin functions identify all regional
minima or maxima that are greater than or less than a specified threshold.

The functions accept a grayscale image as input and return a binary image
as output. In the output binary image, the regional minima or maxima are
set to 1; all other pixels are set to 0.

For example, this simple image contains two primary regional maxima, the
blocks of pixels containing the value 13 and 18, and several smaller maxima,

set to 11.

A = [10 10 10 10 10 10 10 10 10 10;
10 13 13 13 10 10 11 10 11 10;
10 13 13 13 10 10 10 11 10 10;
10 13 13 13 10 10 11 10 11 10
10 10 10 10 10 10 10 10 10 10
10 11 10 10 10 18 18 18 10 10
10 10 10 11 10 18 18 18 10 10;
10 10 11 10 10 18 18 18 10 10;
10 11 10 11 10 10 10 10 10 10;
10 10 10 10 10 10 11 10 10 107 :

The binary image returned by imregionalmax pinpoints all these regional
maxima.

B = imregionalmax(A)

oo oo o oo oo o
[ R = R = T
[T = T = T T = TR P
=R = R = T = T
oo oo o oo oo o
= = T I = R = i = R
B e R N = T = T
= = e = e ==
= =T =T = T = T = T T
oo o000 oo oo o
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You might want only to identify areas of the image where the change in
intensity is extreme; that is, the difference between the pixel and neighboring
pixels is greater than (or less than) a certain threshold. For example, to find
only those regional maxima in the sample image, A, that are at least two units
higher than their neighbors, use imextendedmax.

B = imextendedmax(A,2)

B =

Lo o Y o Y o Y Y o Y o Y o Y o |
[ o e T o T o R = B =]
o O O O O O = = = O
O O O O O O = = = O
Lo o Y o Y o Y Y o Y o Y o Y o |
o O = = = OO O O O
O O = = = O O O O O
oo = = = OO O O O
Lo o Y o Y o Y o Y o Y o Y o R o R |
[ Y e Y e Y e Y o Y e Y Y i Y i Y i

Suppressing Minima and Maxima

In an image, every small fluctuation in intensity represents a regional
minimum or maximum. You might only be interested in significant minima or
maxima and not in these smaller minima and maxima caused by background
texture.

To remove the less significant minima and maxima but retain the significant
minima and maxima, use the imhmax or imhmin function. With these functions,
you can specify a contrast criteria or threshold level, A, that suppresses all
maxima whose height is less than A or whose minima are greater than A.

Note The imregionalmin, imregionalmax, imextendedmin, and
imextendedmax functions return a binary image that marks the locations
of the regional minima and maxima in an image. The imhmax and imhmin
functions produce an altered image.
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For example, this simple image contains two primary regional maxima, the
blocks of pixels containing the value 14 and 18, and several smaller maxima,

set to 11.

A = [10 10 10 10 10 10 10 10 10 10;
10 14 14 14 10 10 11 10 11 107
10 14 14 14 10 10 10 11 10 107
10 14 14 14 10 10 11 10 11 10;
10 10 10 10 10 10 10 10 10 10;
10 11 10 10 10 18 18 18 10 10;
10 10 10 11 10 18 18 18 10 10;
10 10 11 10 10 18 18 18 10 10;
10 11 10 11 10 10 10 10 10 10;
10 10 10 10 10 10 11 10 10 10];

To eliminate all regional maxima except the two significant maxima, use
imhmax, specifying a threshold value of 2. Note that imhmax only affects the
maxima; none of the other pixel values are changed. The two significant
maxima remain, although their heights are reduced.

B = imhmax(A,2)

B =
10 10 10 10 10 10 10 10 10 10
10 12 12 12 10 10 10 10 10 10
10 12 12 12 10 10 10 10 10 10
10 12 12 12 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 16 16 16 10 10
10 10 10 10 10 16 16 16 10 10
10 10 10 10 10 16 16 16 10 10
10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10

This figure takes the second row from the sample image to illustrate in 1-D
how imhmax changes the profile of the image.
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~— Original profile

J L L1

- | f-moximo tronsform

Imposing a Minimum

You can emphasize specific minima (dark objects) in an image using the
imimposemin function. The imimposemin function uses morphological
reconstruction to eliminate all minima from the image except the minima
you specify.

To illustrate the process of imposing a minimum, this code creates a simple
image containing two primary regional minima and several other regional
minima.

mask = uint8(10*ones(10,10));

mask(6:8,6:8) = 2;

mask(2:4,2:4) = 7;

mask(3,3) = 5;

mask(2,9) = 9

mask(3,8) = 9

mask(9,2) = 9

mask(8,3) = 9

mask = 10 10 10 10 10 10 10 10 10 10

10 7 7 I 10 10 10 10 g 10
10 7 5 ¥ 10 10 10 g 10 10
10 7 7 ¥ 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 2 2 2 10 10
10 10 10 10 10 2 2 2 10 10
10 10 9 10 10 2 2 2 10 10
10 9 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10

10-33



'IO Morphological Operations

10-34

Creating a Marker Image

To obtain an image that emphasizes the two deepest minima and removes all
others, create a marker image that pinpoints the two minima of interest. You
can create the marker image by explicitly setting certain pixels to specific
values or by using other morphological functions to extract the features you
want to emphasize in the mask image.

This example uses imextendedmin to get a binary image that shows the
locations of the two deepest minima.

marker = imextendedmin(mask,1)

marker =

[ T T o T o Y T T T Y o
[ R e T e T T e T o R T T e
[ I T e T T e T o R T o I =
[ I T e T T o T o R T T
[ I T e T o T o T o B T T e
[ R R = =T =T = =
[ I R = =T =T = T =
[ R R = = = =T =
[ I T o T T o T o R T T R
[ I T e T T o T o R T T

Applying the Marker Image to the Mask

Now use imimposemin to create new minima in the mask image at the points
specified by the marker image. Note how imimposemin sets the values of
pixels specified by the marker image to the lowest value supported by the
datatype (0 for uint8 values). imimposemin also changes the values of all the
other pixels in the image to eliminate the other minima.
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I = imimposemin(mask,marker)

I =
11 11 11 11 11 11 11 11 11 11
11 8 8 8 11 11 11 11 11 11
11 8 0 8 11 11 11 11 11 11
11 8 8 8 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 0 0 0 11 11
11 11 11 11 11 0 0 0 11 11
11 11 11 11 11 0 0 0 11 11

11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11

This figure illustrates in 1-D how imimposemin changes the profile of row 2
of the image.
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Distance Transform

The distance transform provides a metric or measure of the separation of
points in the image. The Image Processing Toolbox provides a function,
bwdist, that calculates the distance between each pixel that is set to off (0)

and the nearest nonzero pixel for binary images.

The bwdist function supports several distance metrics, listed in the following

table.
Distance Metrics
Distance Metric | Description lllustration
Euclidean The ‘Euch.dean' distance is the ofo]p I I
straight-line distance between
two pixels. o o 10|oo| 10
olo|o 141 10[1.41
Imag Distance fransfor
City Block The city block distance metric o o N I
measures the path between the _
pixels based on a 4-connected o|1]o 1 (o]
neighborhood. P1xel§ whose ololo N I
edges touch are 1 unit apart;
pixels diagonally touching are | Image Distan e tronsfarm

2 units apart.
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Distance Metrics (Continued)

Distance Metric | Description lllustration
Chessboard The chessboard distance metric olo y T e
measures the path between the }:
pixels based on an 8-connected || © V] o 1 (o |1
neighborhood. Pixels whose
o|lo|o 11 |1
edges or corners touch are 1
unit apart. Imnge Distonce tronsform
Quasi-Euclidean | The quasi-Euclidean mgtric ololololo] kelz2l2d22]28
measures the total Euclidean olololo — 217 aholialz2
distance along a set of 1ol Roliololiolza
horizontal, vertical, and bl Bl S - -
diagonal line segments. o|Cfleo|o 2.2(1.4[10(14|2.2
o|lo|o|o|lo| |28|z.2|z0[22|28

Image O'ktonce tronstarm

This example creates a binary image containing two intersecting circular

objects.
center1 = -10;
center2 = -centeri;

dist = sqrt(2*(2*centert)"2);

radius = dist/2 * 1.4;

lims = [floor(centeri1-1.2*radius) ceil(center2+1.2*radius)];
[x,y] = meshgrid(lims(1):1ims(2));

bwi = sqrt((x-centert).”2 + (y-centeri).”2) <= radius;

bw2 = sqrt((x-center2).”2 + (y-center2).”2) <= radius;

bw = bwi | bw2;

figure, imshow(bw), title('bw')

To compute the distance transform of the complement of the binary image,
use the bwdist function. In the image of the distance transform, note how the
centers of the two circular areas are white.
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D = bwdist(~bw);
figure, imshow(D,[]), title('Distance transform of ~bw')

\
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Objects, Regions, and Feature Measurement

The toolbox includes several functions that return information about the
features in a binary image, including

¢ Connected-component labeling, and using the label matrix to get statistics
about an image

¢ Selecting objects in a binary image
¢ Finding the area of the foreground of a binary image

¢ Finding the Euler number of a binary image

Pixels that are on, i.e., set to the value 1, in a binary image are considered
to be the foreground. When you view a binary image, the foreground pixels
appear white. Pixels that are off, i.e., set to the value 0, are considered to
be the background. When you view a binary image, the background pixels
appear black.

Connected-Component Labeling

The bwlabel and the bwlabeln functions perform connected-component
labeling, which is a method for identifying each object in a binary image. The
bwlabel function supports 2-D inputs only; the bwlabeln function supports
inputs of any dimension.

These functions return a matrix, called a label matrix. A label matrix is an
image, the same size as the input image, in which the objects in the input
image are distinguished by different integer values in the output matrix. For
example, bwlabel can identify the objects in this binary image.

BW = [

O OO OO0 oo
O OO0 =+ =+ 20
(el elNolNoll A el
O =+ =4 2~ OO0 OO0
o - = = 00O0O0
OO OO0 O0O—~O0
[eNelNoleololl gl -
cecgsenze

—_—
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>
I

bwlabel (BW,4)

O O O0OO0OO0OO0oOOoOOo
OO0 OO0 = =220
(e elNolNoll A e
ONMNDMNMNOOOO
oONMNMNMOOOOoO
O OO 000 wOo
OO OO0 WWwWOo
O O OO0 WwOo

In the output matrix, the 1’s represent one object, the 2’s a second object, and
the 3’s a third. (If you had used 8-connected neighborhoods (the default),
there would be only two objects, because the first and second objects would
be a single object, connected along the diagonal.)

Viewing a Label Matrix

The label matrix returned by bwlabel or bwlabeln is of class double; it

is not a binary image. One way to view it is to display it as a pseudocolor
indexed image, using label2rgb. In the pseudocolor image, each number that
identifies an object in the label matrix is used as an index value into the
associated colormap matrix. When you view a label matrix as an pseudocolor
image, the objects in the image are easier to distinguish.

To illustrate this technique, this example uses label2rgb to view the label
matrix X. The call to 1abel2rgb specifies one of the standard MATLAB
colormaps, jet. The third argument, 'k', specifies the background color
(black).

X = bwlabel(BW1,4);

RGB = label2rgb(X, @jet, 'k');
imshow(RGB, 'notruesize')
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Using Color to Distinguish Objects in a Binary Image

Selecting Objects in a Binary Image

You can use the bwselect function to select individual objects in a binary
image. You specify pixels in the input image, and bwselect returns a binary
image that includes only those objects from the input image that contain one
of the specified pixels.

You can specify the pixels either noninteractively or with a mouse. For
example, suppose you want to select objects in the image displayed in the
current axes. You type

BW2 = bwselect;

The cursor changes to crosshairs when it is over the image. Click the objects
you want to select; bwselect displays a small star over each pixel you
click. When you are done, press Return. bwselect returns a binary image
consisting of the objects you selected, and removes the stars.

See the reference page for bwselect for more information.

Finding the Area of the Foreground of a Binary
Image

The bwarea function returns the area of a binary image. The area is a
measure of the size of the foreground of the image. Roughly speaking, the
area is the number of on pixels in the image.
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bwarea does not simply count the number of pixels set to on, however. Rather,
bwarea weights different pixel patterns unequally when computing the area.
This weighting compensates for the distortion that is inherent in representing
a continuous image with discrete pixels. For example, a diagonal line of 50
pixels is longer than a horizontal line of 50 pixels. As a result of the weighting
bwarea uses, the horizontal line has area of 50, but the diagonal line has
area of 62.5.

This example uses bwarea to determine the percentage area increase in
circbw.tif that results from a dilation operation.

BW = imread('circbw.tif');

SE ones(5);

BW2 = imdilate(BW,SE);

increase = (bwarea(BW2) - bwarea(BW))/bwarea(BW);
increase =

0.3456

See the reference page for bwarea for more information about the weighting
pattern.

Finding the Euler Number of a Binary Image

The bweuler function returns the Euler number for a binary image. The
Euler number is a measure of the topology of an image. It is defined as the
total number of objects in the image minus the number of holes in those
objects. You can use either 4- or 8-connected neighborhoods.

This example computes the Euler number for the circuit image, using
8-connected neighborhoods.

BW1 = imread('circbw.tif');
eul bweuler(BW1,8)

eul
-85

In this example, the Euler number is negative, indicating that the number of
holes is greater than the number of objects.
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Lookup Table Operations

10-44

Certain binary image operations can be implemented most easily through
lookup tables. A lookup table is a column vector in which each element
represents the value to return for one possible combination of pixels in a
neighborhood. This section includes the following topics:

® “Creating a Lookup Table” on page 10-44
e “Using a Lookup Table” on page 10-45

Creating a Lookup Table

You can use the makelut function to create lookup tables for various
operations. makelut creates lookup tables for 2-by-2 and 3-by-3 neighborhoods.
This figure illustrates these types of neighborhoods. Each neighborhood pixel
is indicated by an x, and the center pixel is the one with a circle.

x|x | x
@ x x .@ x
x x o X
2-by-2 neighborhood 3-by-3 neighborhood

For a 2-by-2 neighborhood, there are 16 possible permutations of the pixels
in the neighborhood. Therefore, the lookup table for this operation is a
16-element vector. For a 3-by-3 neighborhood, there are 512 permutations, so
the lookup table is a 512-element vector.

Note You cannot use makelut and applylut for neighborhoods of sizes
other than 2-by-2 or 3-by-3. These functions support only 2-by-2 and 3-by-3
neighborhoods, because lookup tables are not practical for neighborhoods
larger than 3-by-3. For example, a lookup table for a 4-by-4 neighborhood
would have 65,536 entries.
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Using a Lookup Table

Once you create a lookup table, you can use it to perform the desired operation
by using the applylut function.

The example below illustrates using lookup table operations to modify an
image containing text. The example creates an anonymous function that
returns 1 if three or more pixels in the 3-by-3 neighborhood are 1; otherwise, it
returns 0. The example then calls makelut, passing in this function as the first
argument, and using the second argument to specify a 3-by-3 lookup table.

f = @(x) sum(x(:)) >= 3;
lut = makelut(f,3);

lut is returned as a 512-element vector of 1’s and 0’s. Each value is the output
from the function for one of the 512 possible permutations.

You then perform the operation using applylut.

BW1 = imread('text.png');
BW2 applylut(BW1,1lut);
imshow (BW1)

figure, imshow(BW2)

The term watershed The term watershed
refers to a ridge that ... refers to arvidge that ...
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Image Before and After Applying Lookup Table Operation

For information about how applylut maps pixel combinations in the image to
entries in the lookup table, see the reference page for applylut.
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Analyzing and Enhancing

Images

This chapter describes the Image Processing Toolbox functions that support a
range of standard image processing operations for analyzing and enhancing

images.

Getting Information about Pixel
Values and Statistics (p. 11-2)

Analyzing an Image (p. 11-11)
Analyzing the Texture of an Image
(p. 11-24)

Intensity Adjustment (p. 11-34)

Noise Removal (p. 11-47)

Return information about the data
values that make up an image

Return information about the
structure of an image

Return information about the
texture of an image

Improve an image by intensity
adjustment

Improve an image by removing noise
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Getting Information about Pixel Values and Statistics

The Image Processing Toolbox provides several functions that return
information about the data values that make up an image. These functions
return information about image data in various forms, including

® “Getting Information About Image Pixels” on page 11-2

® “Getting the Intensity Profile of an Image” on page 11-3

* “Displaying a Contour Plot of Image Data” on page 11-7

® “Creating an Image Histogram” on page 11-9

® “Getting Summary Statistics About an Image” on page 11-10

® “Computing Properties for Image Regions” on page 11-10

Getting Information About Image Pixels

To determine the values of one or more pixels in an image and return the
values in a variable, use the impixel function. You can specify the pixels by
passing their coordinates as input arguments or you can select the pixels
interactively using a mouse. impixel returns the value of specified pixels in a
variable in the MATLAB workspace.

Note You can also get pixel value information interactively using the Image
Tool -- see “Getting Information about the Pixels in an Image” on page 4-24.

This example illustrates how to use impixel to get pixel values.
1 Display an image.
imshow canoe.tif

2 Call impixel. When called with no input arguments, impixel associates
itself with the image in the current axes.

vals = impixel
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3 Select the points you want to examine in the image by clicking the mouse.
impixel places a star at each point you select.

4 When you are finished selecting points, press Return. impixel returns the
pixel values in an n-by-2 array, where n is the number of points you selected.
The stars used to indicate selected points disappear from the image.

pixel_values =

0.1294 0.1294 0.1294
0.5176 0 0
0.7765 0.6118 0.4196

Getting the Intensity Profile of an Image

The intensity profile of an image is the set of intensity values taken from
regularly spaced points along a line segment or multiline path in an image.
For points that do not fall on the center of a pixel, the intensity values are
interpolated.

To create an intensity profile, use the improfile function. This function
calculates and plots the intensity values along a line segment or a multiline
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path in an image. You define the line segment (or segments) by specifying
their coordinates as input arguments. You can define the line segments using
a mouse. (By default, improfile uses nearest-neighbor interpolation, but you
can specify a different method. For more information, see “Interpolation” on
page 6-3.) improfile works best with grayscale and truecolor images.

For a single line segment, improfile plots the intensity values in a
two-dimensional view. For a multiline path, improfile plots the intensity
values in a three-dimensional view.

If you call improfile with no arguments, the cursor changes to crosshairs
when it is over the image. You can then specify line segments by clicking
the endpoints; improfile draws a line between each two consecutive points
you select. When you finish specifying the path, press Return. improfile
displays the plot in a new figure.

In this example, you call improfile and specify a single line with the mouse.
In this figure, the line is shown in red, and is drawn from top to bottom.

I = fitsread('solarspectra.fts');
imshow(I,[]);
improfile

Image Courtesy of Ann Walker

improfile displays a plot of the data along the line. Notice the peaks and
valleys and how they correspond to the light and dark bands in the image.
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The example below shows how improfile works with an RGB image. Use
imshow to display the image in a figure window. Call improfile without
any arguments and trace a line segment in the image interactively. In the
figure, the black line indicates a line segment drawn from top to bottom.
Double-click to end the line segment.

imshow peppers.png
improfile
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RGB Image with Line Segment Drawn with improfile

The improfile function displays a plot of the intensity values along the

line segment. The plot includes separate lines for the red, green, and blue
intensities. In the plot, notice how low the blue values are at the beginning of
the plot where the line traverses the orange pepper.
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Plot of Intensity Values Along a Line Segment in an RGB Image

Displaying a Contour Plot of Image Data

You can use the toolbox function imcontour to display a contour plot of the
data in a grayscale image. A contour is a path in an image along which the
image intensity values are equal to a constant. This function is similar to the
contour function in MATLAB, but it automatically sets up the axes so their
orientation and aspect ratio match the image.

This example displays a grayscale image of grains of rice and a contour plot of
the image data:
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1 Read a grayscale image and display it.

I = imread('rice.png');
imshow(1I)

2 Display a contour plot of the grayscale image.

figure, imcontour(I,3)
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You can use the clabel function to label the levels of the contours. See the
description of clabel in the MATLAB Function Reference for details.
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Creating an Image Histogram

An image histogram is a chart that shows the distribution of intensities in

an indexed or grayscale image. You can use the information in a histogram
to choose an appropriate enhancement operation. For example, if an image
histogram shows that the range of intensity values is small, you can use an
intensity adjustment function to spread the values across a wider range.

To create an image histogram, use the imhist function. This function creates
a histogram plot by making n equally spaced bins, each representing a range
of data values. It then calculates the number of pixels within each range.

The following example displays an image of grains of rice and a histogram
based on 64 bins. The histogram shows a peak at around 100, corresponding
to the dark gray background in the image. For information about how to
modify an image by changing the distribution of its histogram, see “Adjusting
Intensity Values to a Specified Range” on page 11-35.

1 Read image and display it.

I = imread('rice.png');
imshow(I)

2 Display histogram of image.

figure, imhist(I)
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Getting Summary Statistics About an Image

You can compute standard statistics of an image using the mean2, std2, and
corr2 functions. mean2 and std2 compute the mean and standard deviation of
the elements of a matrix. corr2 computes the correlation coefficient between
two matrices of the same size.

These functions are two-dimensional versions of the mean, std, and corrcoef
functions described in the MATLAB Function Reference.

Computing Properties for Image Regions

You can use the regionprops function to compute properties for image
regions. For example, regionprops can measure such properties as the area,
center of mass, and bounding box for a region you specify. See the reference
page for regionprops for more information.
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Analyzing an Image

Image analysis techniques return information about the structure of an
image. This section describes toolbox functions that you can use for these
image analysis techniques:

® “Detecting Edges” on page 11-11

¢ “Tracing Boundaries” on page 11-13

¢ “Detecting Lines Using the Hough Transform” on page 11-17
e “Using Quadtree Decomposition” on page 11-21

The toolbox also includes functions that return information about the texture
of an image. See “Analyzing the Texture of an Image” on page 11-24 for more
information.

Detecting Edges

In an image, an edge is a curve that follows a path of rapid change in image
intensity. Edges are often associated with the boundaries of objects in a scene.
Edge detection is used to identify the edges in an image.

To find edges, you can use the edge function. This function looks for places in
the image where the intensity changes rapidly, using one of these two criteria:

¢ Places where the first derivative of the intensity is larger in magnitude
than some threshold

¢ Places where the second derivative of the intensity has a zero crossing

edge provides a number of derivative estimators, each of which implements
one of the definitions above. For some of these estimators, you can specify
whether the operation should be sensitive to horizontal edges, vertical edges,
or both. edge returns a binary image containing 1’s where edges are found
and 0’s elsewhere.

The most powerful edge-detection method that edge provides is the Canny
method. The Canny method differs from the other edge-detection methods in
that it uses two different thresholds (to detect strong and weak edges), and
includes the weak edges in the output only if they are connected to strong

11-11



11 Analyzing and Enhancing Images

edges. This method is therefore less likely than the others to be fooled by
noise, and more likely to detect true weak edges.

The following example illustrates the power of the Canny edge detector by
showing the results of applying the Sobel and Canny edge detectors to the

same image:

1 Read image and display it.

I = imread('coins.png');
imshow(I)

2 Apply the Sobel and Canny edge detectors to the image and display them.

BW1 = edge(I, 'sobel');
BW2 edge(I, 'canny');
imshow (BW1)

figure, imshow(BW2)

Sobel Filter Canny Filter
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For an interactive demonstration of edge detection, try running edgedemo.

Tracing Boundaries
The toolbox includes two functions you can use to find the boundaries of

objects in a binary image:

® pwtraceboundary

® pwboundaries

The bwtraceboundary function returns the row and column coordinates of all

the pixels on the border of an object in an image. You must specify the location
of a border pixel on the object as the starting point for the trace.

The bwboundaries function returns the row and column coordinates of border
pixels of all the objects in an image.

For both functions, the nonzero pixels in the binary image belong to an object
and pixels with the value 0 (zero) constitute the background.

The following example uses bwtraceboundary to trace the border of an object
in a binary image and then uses bwboundaries to trace the borders of all the

objects in the image:

1 Read image and display it.

I = imread('coins.png');
imshow(I)
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2 Convert the image to a binary image. bwtraceboundary and bwboundaries

only work with binary images.

BW = im2bw(I);
imshow (BW)

3 Determine the row and column coordinates of a pixel on the border of

the object you want to trace. bwboundary uses this point as the starting
location for the boundary tracing.

dim = size(BW)
col = round(dim(2)/2)-90;
row = min(find(BW(:,col)))

4 Call bwtraceboundary to trace the boundary from the specified point. As

required arguments, you must specify a binary image, the row and column
coordinates of the starting point, and the direction of the first step. The
example specifies north ('N'). For information about this parameter, see
“Choosing the First Step and Direction for Boundary Tracing” on page
11-16.

boundary = bwtraceboundary (BW,[row, col],'N');

Display the original grayscale image and use the coordinates returned by
bwtraceboundary to plot the border on the image.

imshow(I)
hold on;
plot(boundary(:,2),boundary(:,1),'g', 'LineWidth',3);
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I_ Objedt with traced boundary

6 To trace the boundaries of all the coins in the image, use the bwboundaries
function. By default, bwboundaries finds the boundaries of all objects in
an image, including objects inside other objects. In the binary image used
in this example, some of the coins contain black areas that bwboundaries
interprets as separate objects. To ensure that bwboundaries only traces
the coins, use imfill to fill the area inside each coin.

BW_filled = imfill(BW, 'holes');
boundaries = bwboundaries(BW_filled);

bwboundaries returns a cell array, where each cell contains the row/column
coordinates for an object in the image.

7 Plot the borders of all the coins on the original grayscale image using the
coordinates returned by bwboundaries.

for k=1:10
b = boundaries{k};
plot(b(:,2),b(:,1),'g', 'LineWidth',3);
end

11-15



11 Analyzing and Enhancing Images

11-16

Choosing the First Step and Direction for Boundary Tracing
For certain objects, you must take care when selecting the border pixel you
choose as the starting point and the direction you choose for the first step
parameter (north, south, etc.).

For example, if an object contains a hole and you select a pixel on a thin part
of the object as the starting pixel, you can trace the outside border of the
object or the inside border of the hole, depending on the direction you choose
for the first step. For filled objects, the direction you select for the first step
parameter is not as important.

To illustrate, this figure shows the pixels traced when the starting pixel is
on a thin part of the object and the first step is set to north and south. The
connectivity is set to 8 (the default).
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Impact of First Step and Direction Parameters on Boundary Tracing

Detecting Lines Using the Hough Transform

The Image Processing Toolbox includes functions that support the Hough
transform.

® hough
® houghpeaks

® houghlines
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The hough function implements the Standard Hough Transform (SHT).
The Hough transform is designed to detect lines, using the parametric
representation of a line:

rho = x*cos(theta) + y*sin(theta)

The variable rho is the distance from the origin to the line along a vector
perpendicular to the line. theta is the angle between the x-axis and this
vector. The hough function generates a parameter space matrix whose rows
and columns correspond to these rho and theta values, respectively.

The houghpeaks function finds peak values in this space, which represent
potential lines in the input image.

The houghlines function finds the endpoints of the line segments
corresponding to peaks in the Hough transform and it automatically fills in
small gaps.

The following example shows how to use these functions to detect lines in
an image.

1 Read an image into the MATLAB workspace.
I = imread('circuit.tif');
2 For this example, rotate and crop the image.

rotI = imrotate(I,33,'crop');
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3 Find the edges in the image.

BW = edge(rotI, 'canny');

4 Compute the Hough transform of the image using the hough function.
[H,theta,rho] = hough(BW);
5 Display the transform.
imshow(H,[], 'XData',theta, 'YData',rho,...
'InitialMagnification','fit');

xlabel('\theta'), ylabel('\rho');
axis on, axis normal, hold on;

6 Find the peaks in the Hough transform matrix, H, using the houghpeaks
function.
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P = houghpeaks(H,5, 'threshold',ceil(0.3*max(H(:))));

7 Plot the peaks.

X theta(P(:,2));
y = rho(P(:,1));
plot(x,y,'s', 'color', 'white');

8 Find lines in the image.

lines = houghlines(BW,theta,rho,P, 'FillGap',5, 'MinLength',7);

9 Create a plot that superimposes the lines on the original image.

figure, imshow(rotI), hold on

max_len = 0;

for k = 1:1length(1lines)
Xy [lines(k).point1; lines(k).point2];
plot(xy(:,1),xy(:,2), ' 'LineWidth',2, 'Color', 'green');

% Plot beginnings and ends of lines
plot(xy(1,1),xy(1,2),'x"','LineWidth',2, 'Color"', 'yellow');
plot(xy(2,1),xy(2,2),'x"', 'LineWidth',2, '‘Color', 'red');

% Determine the endpoints of the longest line segment
len = norm(lines(k).point1 - lines(k).point2);
if ( len > max_len)
max_len = len;
xy_long XY
end

end

% highlight the longest line segment
plot(xy_long(:,1),xy_long(:,2), ' 'LineWidth',2, 'Color', 'cyan');
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Using Quadtree Decomposition

Quadtree decomposition is an analysis technique that involves subdividing
an image into blocks that are more homogeneous than the image itself. This
technique reveals information about the structure of the image. It is also
useful as the first step in adaptive compression algorithms.

You can perform quadtree decomposition using the qtdecomp function. This
function works by dividing a square image into four equal-sized square blocks,
and then testing each block to see if it meets some criterion of homogeneity
(e.g., if all the pixels in the block are within a specific dynamic range). If a
block meets the criterion, it is not divided any further. If it does not meet
the criterion, it is subdivided again into four blocks, and the test criterion is
applied to those blocks. This process is repeated iteratively until each block
meets the criterion. The result might have blocks of several different sizes.

Example: Performing Quadtree Decomposition

To illustrate, this example performs quadtree decomposition on a 512-by-512
grayscale image. For an interactive demonstration of quadtree decomposition,
run the demo qgtdemo.

1 Read in the grayscale image.

I = imread('liftingbody.png');
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2 Specify the test criteria used to determine the homogeneity of each block
in the decomposition. For example, the criterion might be this threshold
calculation.

max (block(:)) - min(block(:)) <= 0.2

You can also supply qtdecomp with a function (rather than a threshold
value) for deciding whether to split blocks; for example, you might base the
decision on the variance of the block. See the reference page for gtdecomp
for more information.

3 Perform this quadtree decomposition by calling the gtdecomp function,
specifying the image and the threshold value as arguments.

S = qtdecomp(I,0.27)

You specify the threshold as a value between 0 and 1, regardless of the
class of I. If I is uint8, qtdecomp multiplies the threshold value by 255 to
determine the actual threshold to use. If I is uint16, gtdecomp multiplies
the threshold value by 65535.

gtdecomp first divides the image into four 256-by-256 blocks and applies the
test criterion to each block. If a block does not meet the criterion, gtdecomp
subdivides it and applies the test criterion to each block. gtdecomp continues
to subdivide blocks until all blocks meet the criterion. Blocks can be as small
as 1-by-1, unless you specify otherwise.

gtdecomp returns S as a sparse matrix, the same size as I. The nonzero
elements of S represent the upper left corners of the blocks; the value of each
nonzero element indicates the block size.

The following figure shows the original image and a representation of its
quadtree decomposition. (To see how this representation was created, see the
example on the qtdecomp reference page.) Each black square represents a
homogeneous block, and the white lines represent the boundaries between
blocks. Notice how the blocks are smaller in areas corresponding to large
changes in intensity in the image.
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The toolbox supports a set of functions that you can use for texture analysis.
Texture analysis refers to the characterization of regions in an image by their
texture content. Texture analysis attempts to quantify intuitive qualities
described by terms such as rough, smooth, silky, or bumpy as a function of
the spatial variation in pixel intensities. In this sense, the roughness or
bumpiness refers to variations in the intensity values, or gray levels.

Texture analysis is used in a variety of applications, including remote sensing,
automated inspection, and medical image processing. Texture analysis can
be used to find the texture boundaries, called texture segmentation. Texture
analysis can be helpful when objects in an image are more characterized

by their texture than by intensity, and traditional thresholding techniques
cannot be used effectively.

The toolbox provides two types of texture functions:

o Texture filter functions — These functions use standard statistical
measures to characterize the local texture of an image. See “Using Texture
Filter Functions” on page 11-24 for more information.

® Gray-level co-occurrence matrix — These functions characterize the
texture of an image by calculating how often pairs of pixel with specific
values and in a specified spatial relationship occur in an image and then
extracting statistical measures from this matrix. See “Using a Gray-Level
Co-Occurrence Matrix (GLCM)” on page 11-28 for more information

Using Texture Filter Functions

The toolbox includes three texture analysis functions that filter an image
using standard statistical measures, such as range, standard deviation, and
entropy. Entropy is a statistical measure of randomness. These statistics can
characterize the texture of an image because they provide information about
the local variability of the intensity values of pixels in an image.

For example, in areas with smooth texture, the range of values in the
neighborhood around a pixel will be a small value; in areas of rough texture,
the range will be larger. Similarly, calculating the standard deviation of pixels
in a neighborhood can indicate the degree of variability of pixel values in
that region.
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The following sections provide additional information about the texture
functions:

® “Understanding the Texture Filter Functions” on page 11-25

¢ “Example: Using the Texture Functions” on page 11-26

Understanding the Texture Filter Functions
The three statistical texture filtering functions are

rangefilt -- Calculates the local range of an image
stdfilt -- Calculates the local standard deviation of an image
entropyfilt -- Calculates the local entropy of a grayscale image

The functions all operate in a similar way: they define a neighborhood around
the pixel of interest and calculate the statistic for that neighborhood.

This example shows how the rangefilt function operates on a simple array.

A=[112345;678910; 11 12 13 14 15; 16 17 18 19 20 ]
A =

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15
16 17 18 19 20

B = rangefilt(A)

11-25



11 Analyzing and Enhancing Images

11-26

The following figure shows how the value of element B(2,4) was calculated
from A(2,4). By default, the rangefilt function uses a 3-by-3 neighborhood
but you can specify neighborhoods or different shapes and sizes.
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Determining Pixel Values in Range Filtered Output Image

The stdfilt and entropyfilt functions operate similarly, defining a
neighborhood around the pixel of interest and calculating the statistic for
the neighborhood to determine the pixel value in the output image. The
stdfilt function calculates the standard deviation of all the values in the
neighborhood.

The entropyfilt function calculates the entropy of the neighborhood and
assigns that value to the output pixel. Note that, by default, the entropyfilt
function defines a 9-by-9 neighborhood around the pixel of interest. To
calculate the entropy of an entire image, use the entropy function.

Example: Using the Texture Functions

The following example illustrates how the texture filter functions can detect
regions of texture in an image. In the figure, the background is smooth; there
is very little variation in the gray-level values. In the foreground, the surface
contours of the coins exhibit more texture. In this image, foreground pixels
have more variability and thus higher range values. Range filtering makes
the edges and contours of the coins more visible.

To see an example of using filtering functions, view the Texture Segmentation
Using Texture Filters demo.
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1 Read in the image and display it.

I = imread('eight.tif');
imshow(I)

2 Filter the image with the rangefilt function and display the results. Note
how range filtering highlights the edges and surface contours of the coins.

K = rangefilt(I);
figure, imshow(K)
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Using a Gray-Level Co-Occurrence Matrix (GLCM)

The texture filter functions provide a statistical view of texture based on the
image histogram. These functions can provide useful information about the
texture of an image but cannot provide information about shape, i.e., the
spatial relationships of pixels in an image.

Another statistical method that considers the spatial relationship of pixels
is the gray-level co-occurrence matrix (GLCM), also known as the gray-level
spatial dependence matrix. The toolbox provides functions to create a GLCM
and derive statistical measurements from it.

This section includes the following topics.

® “Creating a Gray-Level Co-Occurrence Matrix” on page 11-28
® “Specifying the Offsets” on page 11-29

® “Deriving Statistics from a GLCM” on page 11-30

¢ “Example: Plotting the Correlation” on page 11-31

Creating a Gray-Level Co-Occurrence Matrix

To create a GLCM, use the graycomatrix function. The graycomatrix
function creates a gray-level co-occurrence matrix (GLCM) by calculating
how often a pixel with the intensity (gray-level) value i occurs in a specific
spatial relationship to a pixel with the value j. By default, the spatial
relationship is defined as the pixel of interest and the pixel to its immediate
right (horizontally adjacent), but you can specify other spatial relationships
between the two pixels. Each element (i,j) in the resultant glcm is simply
the sum of the number of times that the pixel with value i occurred in the
specified spatial relationship to a pixel with value j in the input image.

The number of gray levels in the image determines the size of the GLCM. By
default, graycomatrix uses scaling to reduce the number of intensity values
in an image to eight, but you can use the NumLevels and the GrayLimits
parameters to control this scaling of gray levels. See the graycomatrix
reference page for more information.

The gray-level co-occurrence matrix can reveal certain properties about the
spatial distribution of the gray levels in the texture image. For example, if
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most of the entries in the GLCM are concentrated along the diagonal, the
texture is coarse with respect to the specified offset. You can also derive
several statistical measures from the GLCM. See “Deriving Statistics from a
GLCM” on page 11-30 for more information.

To illustrate, the following figure shows how graycomatrix calculates the
first three values in a GLCM. In the output GLCM, element (1,1) contains
the value 1 because there is only one instance in the input image where two
horizontally adjacent pixels have the values 1 and 1, respectively. glcm(1,2)
contains the value 2 because there are two instances where two horizontally
adjacent pixels have the values 1 and 2. Element (1,3) in the GLCM has the
value 0 because there are no instances of two horizontally adjacent pixels
with the values 1 and 3. graycomatrix continues processing the input image,
scanning the image for other pixel pairs (i,j) and recording the sums in the
corresponding elements of the GLCM.
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Process Used to Create the GLCM

Specifying the Offsets

By default, the graycomatrix function creates a single GLCM, with the
spatial relationship, or offset, defined as two horizontally adjacent pixels.
However, a single GLCM might not be enough to describe the textural features
of the input image. For example, a single horizontal offset might not be
sensitive to texture with a vertical orientation. For this reason, graycomatrix
can create multiple GLCMs for a single input image.
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To create multiple GLCMs, specify an array of offsets to the graycomatrix
function. These offsets define pixel relationships of varying direction and
distance. For example, you can define an array of offsets that specify four
directions (horizontal, vertical, and two diagonals) and four distances. In
this case, the input image is represented by 16 GLCMs. When you calculate
statistics from these GLCMs, you can take the average.

You specify these offsets as a p-by-2 array of integers. Each row in the array is
a two-element vector, [row_offset, col offset], that specifies one offset.
row_offset is the number of rows between the pixel of interest and its
neighbor. col_offset is the number of columns between the pixel of interest
and its neighbor. This example creates an offset that specifies four directions
and 4 distances for each direction. For more information about specifying
offsets, see the graycomatrix reference page.

offsets = [ 01; 02; 03; 0 4;...

-1 1; -2 2; -3 3; -4 4;...
-1 0; -20; -30; -40;...
-1 -1; -2 -2; -3 -3; -4 -4];

The figure illustrates the spatial relationships of pixels that are defined by
this array of offsets, where D represents the distance from the pixel of interest.
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Deriving Statistics from a GLCM

After you create the GLCMs, you can derive several statistics from them
using the graycoprops function. These statistics provide information about
the texture of an image. The following table lists the statistics you can derive.
You specify the statistics you want when you call the graycoprops function.



Analyzing the Texture of an Image

For detailed information about these statistics, see the graycoprops reference

page.

Statistic Description

Contrast Measures the local variations in the gray-level
co-occurrence matrix.

Correlation Measures the joint probability occurrence of the specified
pixel pairs.

Energy Provides the sum of squared elements in the GLCM. Also
known as uniformity or the angular second moment.

Homogeneity | Measures the closeness of the distribution of elements in

the GLCM to the GLCM diagonal.

Example: Plotting the Correlation

This example shows how to create a set of GLCMs and derive statistics from
them and illustrates how the statistics returned by graycoprops have a direct
relationship to the original input image.

1 Read in a grayscale image and display it. The example converts the
truecolor image to a grayscale image and then rotates it 90° for this

example.

circuitBoard = rot90(rgb2gray(imread('board.tif')));
imshow(circuitBoard)
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Define offsets of varying direction and distance. Because the image
contains objects of a variety of shapes and sizes that are arranged in
horizontal and vertical directions, the example specifies a set of horizontal
offsets that only vary in distance.

offsetsO = [zeros(40,1) (1:40)'];

Create the GLCMs. Call the graycomatrix function specifying the offsets.

glcms = graycomatrix(circuitBoard, 'Offset',offsets0)

Derive statistics from the GLCMs using the graycoprops function. The
example calculates the contrast and correlation.

stats = graycoprops(glcms, 'Contrast Correlation');

Plot correlation as a function of offset.

figure, plot([stats.Correlation]);

title('Texture Correlation as a function of offset');
xlabel('Horizontal Offset')

ylabel('Correlation')

Texture Comelation as a function of offsat

aFr

06t

05t

04t

Carmrelatian

03t

a2r

01r

u] 5 10 15 20 25 a0 a5 40
Harizantal Offset




Analyzing the Texture of an Image

The plot contains peaks at offsets 7, 15, 23, and 30. If you examine the input
image closely, you can see that certain vertical elements in the image have a
periodic pattern that repeats every seven pixels. The following figure shows
the upper left corner of the image and points out where this pattern occurs.

Repeoted seven-pixel——
puttern
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Image enhancement techniques are used to improve an image, where
“improve” is sometimes defined objectively (e.g., increase the signal-to-noise
ratio), and sometimes subjectively (e.g., make certain features easier to see by
modifying the colors or intensities).

Intensity adjustment is an image enhancement technique that maps an
image’s intensity values to a new range. To illustrate, this figure shows a
low-contrast image with its histogram. Notice in the histogram of the image
how all the values gather in the center of the range.

I = imread('pout.tif');
imshow(I)
figure, imhist(I,64)

= 100 =0 Do dmn

If you remap the data values to fill the entire intensity range [0, 255], you can
increase the contrast of the image. The following sections describe several
intensity adjustment techniques, including

® “Adjusting Intensity Values to a Specified Range” on page 11-35

® “Histogram Equalization” on page 11-39

® “Contrast-Limited Adaptive Histogram Equalization” on page 11-41

® “Decorrelation Stretching” on page 11-42



Intensity Adjustment

The functions described in this section apply primarily to grayscale images.
However, some of these functions can be applied to color images as well.
For information about how these functions work with color images, see the
reference pages for the individual functions.

Adjusting Intensity Values to a Specified Range

You can adjust the intensity values in an image using the imadjust function,
where you specify the range of intensity values in the output image.

For example, this code increases the contrast in a low-contrast grayscale
image by remapping the data values to fill the entire intensity range [0, 255].

I = imread('pout.tif');
J = imadjust(I);
imshow(J)

figure, imhist(J,64)

This figure displays the adjusted image and its histogram. Notice the
increased contrast in the image, and that the histogram now fills the entire
range.
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Adjusted Image and lts Histogram

Specifying the Adjustment Limits

You can optionally specify the range of the input values and the output values
using imadjust. You specify these ranges in two vectors that you pass to
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imadjust as arguments. The first vector specifies the low- and high-intensity
values that you want to map. The second vector specifies the scale over which
you want to map them.

Note Note that you must specify the intensities as values between 0 and 1
regardless of the class of I. If I is uint8, the values you supply are multiplied
by 255 to determine the actual values to use; if I is uint16, the values are
multiplied by 65535. To learn about an alternative way to set these limits
automatically, see “Setting the Adjustment Limits Automatically” on page
11-37.

For example, you can decrease the contrast of an image by narrowing the
range of the data. In the example below, the man’s coat is too dark to reveal
any detail. imadjust maps the range [0,51] in the uint8 input image to
[128,255] in the output image. This brightens the image considerably, and
also widens the dynamic range of the dark portions of the original image,
making it much easier to see the details in the coat. Note, however, that
because all values above 51 in the original image are mapped to 255 (white) in
the adjusted image, the adjusted image appears washed out.

I = imread('cameraman.tif');

J = imadjust(I,[0 0.2],[0.5 1]);
imshow(I)

figure, imshow(J)

Image Courtesy of MIT

Image After Remapping and Widening the Dynamic Range
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Setting the Adjustment Limits Automatically
To use imadjust, you must typically perform two steps:

1 View the histogram of the image to determine the intensity value limits.

2 Specify these limits as a fraction between 0.0 and 1.0 so that you can pass
them to imadjust in the [low_in high_in] vector.

For a more convenient way to specify these limits, use the stretchlim
function. (The imadjust function uses stretchlim for its simplest syntax,
imadjust(I).)

This function calculates the histogram of the image and determines the
adjustment limits automatically. The stretchlim function returns these
values as fractions in a vector that you can pass as the [low_in high_in]
argument to imadjust; for example:

I
J

imread('rice.png');
imadjust(I,stretchlim(I),[0 1]);

By default, stretchlim uses the intensity values that represent the bottom
1% (0.01) and the top 1% (0.99) of the range as the adjustment limits. By
trimming the extremes at both ends of the intensity range, stretchlim makes
more room in the adjusted dynamic range for the remaining intensities. But
you can specify other range limits as an argument to stretchlim. See the
stretchlim reference page for more information.

Gamma Correction

imadjust maps low to bottom, and high to top. By default, the values
between low and high are mapped linearly to values between bottom and
top. For example, the value halfway between low and high corresponds to the
value halfway between bottom and top.

imadjust can accept an additional argument that specifies the gamma
correction factor. Depending on the value of gamma, the mapping between
values in the input and output images might be nonlinear. For example, the
value halfway between low and high might map to a value either greater than
or less than the value halfway between bottom and top.
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Gamma can be any value between 0 and infinity. If gamma is 1 (the default),
the mapping is linear. If gamma is less than 1, the mapping is weighted
toward higher (brighter) output values. If gamma is greater than 1, the
mapping is weighted toward lower (darker) output values.

The figure below illustrates this relationship. The three transformation curves
show how values are mapped when gamma is less than, equal to, and greater
than 1. (In each graph, the x-axis represents the intensity values in the input
image, and the y-axis represents the intensity values in the output image.)

el =1 1

top top top 4

bottom bottom bottom -

low high low high low high

Plots Showing Three Different Gamma Correction Settings

The example below illustrates gamma correction. Notice that in the call to
imadjust, the data ranges of the input and output images are specified as
empty matrices. When you specify an empty matrix, imadjust uses the
default range of [0,1]. In the example, both ranges are left empty; this means
that gamma correction is applied without any other adjustment of the data.

[X,map] = imread('forest.tif')
I = ind2gray(X,map);

J = imadjust(I,[],[]1,0.5);
imshow(I)

figure, imshow(J)



Intensity Adjustment

Image Courtesy of Susan Cohen

Image Before and After Applying Gamma Correction

Histogram Equalization

The process of adjusting intensity values can be done automatically by the
histeq function. histeq performs histogram equalization, which involves
transforming the intensity values so that the histogram of the output image
approximately matches a specified histogram. (By default, histeq tries to
match a flat histogram with 64 bins, but you can specify a different histogram
instead; see the reference page for histeq.)

This example illustrates using histeq to adjust a grayscale image. The
original image has low contrast, with most values in the middle of the
intensity range. histeq produces an output image having values evenly
distributed throughout the range.

I = imread('pout.tif');
J = histeq(I);
imshow(J)

figure, imhist(J,64)
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T
1
280

histeq can return a 1-by-256 vector that shows, for each possible input value,
the resulting output value. (The values in this vector are in the range [0,1],
regardless of the class of the input image.) You can plot this data to get the
transformation curve. For example:

50 100 200

Image After Histogram Equalization with Its Histogram

I = imread('pout.tif');
[J,T] = histeq(I);
figure,plot((0:255)/255,T);
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Notice how this curve reflects the histograms in the previous figure, with
the input values mostly between 0.3 and 0.6, while the output values are
distributed evenly between 0 and 1.

For an interactive demonstration of intensity adjustment, try running
imadjdemo.

Contrast-Limited Adaptive Histogram Equalization

As an alternative to using histeq, you can perform contrast-limited adaptive
histogram equalization (CLAHE) using the adapthisteq function. While
histeq works on the entire image, adapthisteq operates on small regions in
the image, called tiles. Each tile’s contrast is enhanced, so that the histogram
of the output region approximately matches a specified histogram. After
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performing the equalization, adapthisteq combines neighboring tiles using
bilinear interpolation to eliminate artificially induced boundaries.

To avoid amplifying any noise that might be present in the image, you can
use adapthisteq optional parameters to limit the contrast, especially in
homogeneous areas.

To illustrate, this example uses adapthisteq to adjust the contrast in a
grayscale image. The original image has low contrast, with most values in the
middle of the intensity range. adapthisteq produces an output image having
values evenly distributed throughout the range.

I = imread('pout.tif');
J adapthisteq(I);
imshow(I)

figure, imshow(J)

Image After CLAHE Equalization with Its Histogram

Decorrelation Stretching

Decorrelation stretching enhances the color separation of an image

with significant band-band correlation. The exaggerated colors improve
visual interpretation and make feature discrimination easier. You apply
decorrelation stretching with the decorrstretch function. See “Adding a
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Linear Contrast Stretch” on page 11-45 on how to add an optional linear
contrast stretch to the decorrelation stretch.

The number of color bands, NBANDS, in the image is usually three. But you
can apply decorrelation stretching regardless of the number of color bands.

The original color values of the image are mapped to a new set of color values
with a wider range. The color intensities of each pixel are transformed into
the color eigenspace of the NBANDS-by-NBANDS covariance or correlation
matrix, stretched to equalize the band variances, then transformed back to
the original color bands.

To define the bandwise statistics, you can use the entire original image or,
with the subset option, any selected subset of it. See the decorrstretch
reference page.

Simple Decorrelation Stretching

You can apply decorrelation and stretching operations on the library of images
available in the imdemos directory. The library includes a LANDSAT image of
the Little Colorado River. In this example, you perform a simple decorrelation
stretch on this image:

1 The image has seven bands, but just read in the three visible colors:
A = multibandread('littlecoriver.lan', [512, 512, 7],

'uint8=>uint8', 128, 'bil', 'ieee-le',
{'Band', 'Direct',[3 2 1]});

2 Then perform the decorrelation stretch:

B = decorrstretch(A);

3 Now view the results:

imshow(A); figure; imshow(B)

Compare the two images. The original has a strong violet (red-bluish) tint,
while the transformed image has a somewhat expanded color range.
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Little Colorado River Before (left) and After (right) Decorrelation Stretch

A color band scatterplot of the images shows how the bands are decorrelated
and equalized:

rA = A(:,:,1); 0A = A(:,:,2); bA = A(:,:,3);
figure, plot3(rA(:),gA(:),bA(:),"'."); grid('on')
xlabel('Red (Band 3)'); ylabel('Green (Band 2)');
zlabel('Blue (Band 1)")

rB = B(:,:,1); gB = B(:,:,2); bB = B(:,:,3);
figure, plot3(rB(:),gB(:),bB(:),"'."); grid('on')
xlabel('Red (Band 3)'); ylabel('Green (Band 2)');
zlabel('Blue (Band 1)")
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Color Scatterplot Before (left) and After (right) Decorrelation Stretch

Adding a Linear Contrast Stretch

Now try the same transformation, but with a linear contrast stretch applied
after the decorrelation stretch:

imshow(A); C = decorrstretch(A,'Tol',0.01); figure; imshow(C)

Compare the transformed image to the original.

Little Colorado River After Decorrelation Stretch Followed by Linear Contrast
Stretch
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Adding the linear contrast stretch enhances the resulting image by further
expanding the color range. In this case, the transformed color range is
mapped within each band to a normalized interval between 0.01 and 0.99,
saturating 2%.

See the stretchlim function reference page for more about Tol. Without the
Tol option, decorrstretch applies no linear contrast stretch.

Note You can apply a linear contrast stretch as a separate operation after
performing a decorrelation stretch, using stretchlim and imadjust. This
alternative, however, often gives inferior results for uint8 and uint16 images,
because the pixel values must be clamped to [0 255] (or [0 65535]). The Tol
option in decorrstretch circumvents this limitation.




Noise Removal

Noise Removal

Digital images are prone to a variety of types of noise. Noise is the result
of errors in the image acquisition process that result in pixel values that
do not reflect the true intensities of the real scene. There are several ways
that noise can be introduced into an image, depending on how the image is
created. For example:

¢ Ifthe image is scanned from a photograph made on film, the film grain is
a source of noise. Noise can also be the result of damage to the film, or
be introduced by the scanner itself.

¢ If the image is acquired directly in a digital format, the mechanism for
gathering the data (such as a CCD detector) can introduce noise.

¢ Electronic transmission of image data can introduce noise.

The toolbox provides a number of different ways to remove or reduce noise
in an image. Different methods are better for different kinds of noise. The
methods available include

e “Using Linear Filtering” on page 11-47

e “Using Median Filtering” on page 11-48

e “Using Adaptive Filtering” on page 11-50

To simulate the effects of some of the problems listed above, the toolbox

provides the imnoise function, which you can use to add various types of
noise to an image. The examples in this section use this function.

Using Linear Filtering

You can use linear filtering to remove certain types of noise. Certain filters,
such as averaging or Gaussian filters, are appropriate for this purpose.
For example, an averaging filter is useful for removing grain noise from a
photograph. Because each pixel gets set to the average of the pixels in its
neighborhood, local variations caused by grain are reduced.

See “Linear Filtering” on page 8-2 for more information.
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Using Median Filtering

Median filtering is similar to using an averaging filter, in that each output
pixel is set to an average of the pixel values in the neighborhood of the
corresponding input pixel. However, with median filtering, the value of an
output pixel is determined by the median of the neighborhood pixels, rather
than the mean. The median is much less sensitive than the mean to extreme
values (called outliers). Median filtering is therefore better able to remove
these outliers without reducing the sharpness of the image. The medfilt2
function implements median filtering.

Note Median filtering is a specific case of order-statistic filtering, also known
as rank filtering. For information about order-statistic filtering, see the
reference page for the ordfilt2 function.

The following example compares using an averaging filter and medfilt2 to
remove salt and pepper noise. This type of noise consists of random pixels’
being set to black or white (the extremes of the data range). In both cases the
size of the neighborhood used for filtering is 3-by-3.

1 Read in the image and display it.

I = imread('eight.tif');
imshow(I)




Noise Removal

2 Add noise to it.

J = imnoise(I, 'salt & pepper',0.02);
figure, imshow(J)

3 Filter the noisy image with an averaging filter and display the results.

K = filter2(fspecial('average',3),dJ)/255;
figure, imshow(K)
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4 Now use a median filter to filter the noisy image and display the results.
Notice that medfilt2 does a better job of removing noise, with less blurring
of edges.

L = medfilt2(J,[3 3]);
figure, imshow(K)
figure, imshow(L)

Using Adaptive Filtering

The wiener2 function applies a Wiener filter (a type of linear filter) to an
image adaptively, tailoring itself to the local image variance. Where the
variance is large, wiener?2 performs little smoothing. Where the variance is
small, wiener2 performs more smoothing.

This approach often produces better results than linear filtering. The
adaptive filter is more selective than a comparable linear filter, preserving
edges and other high-frequency parts of an image. In addition, there are no
design tasks; the wiener2 function handles all preliminary computations and
implements the filter for an input image. wiener2, however, does require
more computation time than linear filtering.

wiener2 works best when the noise is constant-power (“white”) additive noise,
such as Gaussian noise. The example below applies wiener2 to an image of
Saturn that has had Gaussian noise added. For an interactive demonstration
of filtering to remove noise, try running nrfiltdemo.

RGB = imread('saturn.png');
I = rgb2gray(RGB);
J = imnoise(I, 'gaussian',0,0.005);



Noise Removal

K = wiener2(J,[5 51);
imshow(J)
figure, imshow(K)

Originol Image Courtesy of NASA

Noisy Version (left) and Filtered Version (right)
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Region-Based Processing

This chapter describes operations that you can perform on a selected region

of an image.

Specifying a Region of Interest
(p. 12-2)

Filtering a Region (p. 12-5)

Filling a Region (p. 12-8)

Describes how to specify a region of
interest using the roipoly function

Describes how to apply a filter to a
region using the roifilt2 function

Describes how to fill a region of
interest using the roifill function
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Specifying a Region of Interest

A region of interest is a portion of an image that you want to filter or perform
some other operation on. You define a region of interest by creating a binary
mask, which is a binary image with the same size as the image you want

to process. The mask contains 1’s for all pixels that are part of the region

of interest, and 0’s everywhere else.

You can define more than one region in an image. The regions can be
geographic in nature, such as polygons that encompass contiguous pixels, or
they can be defined by a range of intensities. In the latter case, the pixels are
not necessarily contiguous.

The following subsections discuss methods for creating binary masks:

o “Selecting a Polygon” on page 12-2

® “Other Selection Methods” on page 12-4 (using any binary mask or the
roicolor function)

For an interactive demonstration of region-based processing, try running
roidemo.

Selecting a Polygon

You can use the roipoly function to specify a polygonal region of interest. If
you call roipoly with no input arguments, the cursor changes to crosshairs
when it is over the image displayed in the current axes. You can then specify
the vertices of the polygon by clicking points in the image with the mouse.
When you are done selecting vertices, press Return; roipoly returns a
binary image of the same size as the input image, containing 1’s inside the
specified polygon, and 0’s everywhere else.

The example below illustrates using the interactive syntax of roipoly to
create a binary mask. In the figure, the border of the selected region that was
created using a mouse is shown in red.

I = imread('pout.tif');
imshow(I)
BW = roipoly;



Specifying a Region of Interest

Polygonal Region of Interest Selected Using roipoly

imshow (BW)

Binary Mask Created for the Region Shown in the Preceding Figure

You can also use roipoly noninteractively. See the reference page for roipoly
for more information.
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Other Selection Methods

roipoly provides an easy way to create a binary mask. However, you can use
any binary image as a mask, provided that the binary image is the same size
as the image being filtered.

For example, suppose you want to filter the grayscale image I, filtering only
those pixels whose values are greater than 0.5. You can create the appropriate
mask with this command.

BW = (I > 0.5);

You can also use the poly2mask function to create a binary mask. Unlike the
roipoly function, poly2mask does not require an input image. For more
information, see the poly2mask reference page.

You can also use the roicolor function to define the region of interest based
on a color or intensity range. For more information, see the reference page
for roicolor.



Filtering a Region

Filtering a Region

Filtering a region is the process of applying a filter to a region of interest in an
image, where a binary mask defines the region. For example, you can apply
an intensity adjustment filter to certain regions of an image.

To filter a region in an image, use the roifilt2 function. When you call
roifilt2, you specify a grayscale image, a binary mask, and a filter.
roifilt2 filters the input image and returns an image that consists of
filtered values for pixels where the binary mask contains 1’s and unfiltered
values for pixels where the binary mask contains 0’s. This type of operation is
called masked filtering.

Note roifilt2 is best suited to operations that return data in the same
range as in the original image, because the output image takes some of its
data directly from the input image. Certain filtering operations can result
in values outside the normal image data range (i.e., [0,1] for images of class
double, [0,255] for images of class uint8, and [0,65535] for images of class
uint16). For more information, see the reference page for roifilt2.

Example: Filtering a Region in an Image

This example uses masked filtering to increase the contrast of a specific
region of an image:

1 Read in the image.
I = imread('pout.tif');
2 Create the mask.
This example uses the mask BW created in “Selecting a Polygon” on page

12-2. The region of interest specified by the mask is the logo on the girl’s
jacket.

3 Create the filter.

h = fspecial('unsharp');
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4 Call roifilt2, specifying the image to be filtered, the mask, and the filter.

I2 = roifilt2(h,I,BW);
imshow(1I)
figure, imshow(I2)

Image Before and After Using an Unsharp Filter on the Region of Interest

Specifying the Filtering Operation
roifilt2 also enables you to specify your own function to operate on the

region of interest. This example uses the imadjust function to lighten parts
of an image:

1 Read in the image.

I = imread('cameraman.tif');

2 Create the mask. In this example, the mask is a binary image containing
text. The mask image must be cropped to be the same size as the image to
be filtered.

BW = imread('text.png');
mask = BW(1:256,1:256);

3 Create the filter.

f = @(x) imadjust(x,[]1,[],0.3);

12-6



Filtering a Region

4 Call roifilt2, specifying the image to be filtered, the mask, and the filter.
The resulting image, 12, has the text imprinted on it.

I2 = roifilt2(I,mask,f);
imshow(I2)

Image Brightened Using a Binary Mask Containing Text
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Filling a Region

Filling is a process that fills a region of interest by interpolating the pixel
values from the borders of the region. This process can be used to make
objects in an image seem to disappear as they are replaced with values that
blend in with the background area.

To fill a region of interest, you can use the roifill function. This function is
useful for image editing, including removal of extraneous details or artifacts.

roifill performs the fill operation using an interpolation method based on
Laplace’s equation. This method results in the smoothest possible fill, given
the values on the boundary of the region.

As with roipoly, you select the region of interest with the mouse. When you
complete the selection, roifill returns an image with the selected region
filled in.

This example shows how to use roifill to fill a region in an image.

1 Read an image into the MATLAB workspace and display it. Because the
image is an indexed image, the example uses ind2gray to convert it to a
grayscale image.

load trees
I = ind2gray(X,map);
imshow(I)

2 Call roifill and then use the mouse to select the region you want to fill
(shown in red in the following figure). roifill returns the modified image
in I2.

I2 = roifill;



Filling a Region

3 Display the modified image. Note how the region of interest defined in
the previous step has been filled.

imshow(I2)
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Image Deblurring

This chapter describes how to deblur an image using the toolbox deblurring

functions.

Understanding Deblurring (p. 13-2)

Deblurring with the Wiener Filter
(p. 13-6)

Deblurring with a Regularized Filter
(p. 13-8)

Deblurring with the
Lucy-Richardson Algorithm
(p. 13-10)

Deblurring with the Blind
Deconvolution Algorithm (p. 13-16)

Creating Your Own Deblurring
Functions (p. 13-23)

Avoiding Ringing in Deblurred
Images (p. 13-24)

Defines deblurring and
deconvolution

Using the deconvwnr function

Using the deconvreg function

Using the deconvlucy function

Using the deconvblind function

Using the otf2psf and psf2otf
functions

Using the edgetaper function to
avoid "ringing" in deblurred images
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Understanding Deblurring

This section provides some background on deblurring techniques. The section
includes these topics:

e “Causes of Blurring” on page 13-2

¢ “Deblurring Model” on page 13-2

¢ “Deblurring Functions” on page 13-4

Causes of Blurring

The blurring, or degradation, of an image can be caused by many factors:

¢ Movement during the image capture process, by the camera or, when long
exposure times are used, by the subject

¢ Qut-of-focus optics, use of a wide-angle lens, atmospheric turbulence, or a
short exposure time, which reduces the number of photons captured

e Scattered light distortion in confocal microscopy

Deblurring Model

A blurred or degraded image can be approximately described by this equation
g = Hf + n, where

g
H

The blurred image

The distortion operator, also called the point spread function (PSF).
In the spatial domain, the PSF describes the degree to which an
optical system blurs (spreads) a point of light. The PSF is the
inverse Fourier transform of the optical transfer function (OTF). In
the frequency domain, the OTF describes the response of a linear,
position-invariant system to an impulse. The OTF is the Fourier
transform of the point spread function (PSF). The distortion operator,
when convolved with the image, creates the distortion. Distortion
caused by a point spread function is just one type of distortion.

The original true image

Additive noise, introduced during image acquisition, that corrupts
the image
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Note The image f really doesn’t exist. This image represents what you would
have if you had perfect image acquisition conditions.

Importance of the PSF

Based on this model, the fundamental task of deblurring is to deconvolve
the blurred image with the PSF that exactly describes the distortion.
Deconvolution is the process of reversing the effect of convolution.

Note The quality of the deblurred image is mainly determined by knowledge
of the PSF.

To illustrate, this example takes a clear image and deliberately blurs it by
convolving it with a PSF. The example uses the fspecial function to create a
PSF that simulates a motion blur, specifying the length of the blur in pixels,
(LEN=31), and the angle of the blur in degrees (THETA=11). Once the PSF

is created, the example uses the imfilter function to convolve the PSF
with the original image, I, to create the blurred image, Blurred. (To see
how deblurring is the reverse of this process, using the same images, see
“Deblurring with the Wiener Filter” on page 13-6.)

I imread('peppers.png');
I I(60+[1:256],222+[1:256],:); % crop the image
figure; imshow(I); title('Original Image');
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LEN = 31;

THETA = 11;

PSF = fspecial('motion',LEN,THETA); % create PSF
Blurred = imfilter(I,PSF, 'circular','conv');
figure; imshow(Blurred); title('Blurred Image');

Deblurring Functions
The toolbox includes four deblurring functions, listed here in order of

complexity:
deconvwnr Implements deblurring using the Wiener filter
deconvreg Implements deblurring using a regularized filter

deconvlucy | Implements deblurring using the Lucy-Richardson
algorithm

deconvblind | Implements deblurring using the blind deconvolution
algorithm

All the functions accept a PSF and the blurred image as their primary
arguments. The deconvwnr function implements a least squares solution. The
deconvreg function implements a constrained least squares solution, where
you can place constraints on the output image (the smoothness requirement
is the default). With either of these functions, you should provide some
information about the noise to reduce possible noise amplification during
deblurring.
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Understanding Deblurring

The deconvlucy function implements an accelerated, damped
Lucy-Richardson algorithm. This function performs multiple iterations, using
optimization techniques and Poisson statistics. With this function, you do not
need to provide information about the additive noise in the corrupted image.

The deconvblind function implements the blind deconvolution algorithm,
which performs deblurring without knowledge of the PSF. When you call
deconvblind, you pass as an argument your initial guess at the PSF. The
deconvblind function returns a restored PSF in addition to the restored
image. The implementation uses the same damping and iterative model as
the deconvlucy function.

Note You might need to perform many iterations of the deblurring process,
varying the parameters you specify to the deblurring functions with each
iteration, until you achieve an image that, based on the limits of your
information, is the best approximation of the original scene. Along the

way, you must make numerous judgments about whether newly uncovered
features in the image are features of the original scene or simply artifacts of
the deblurring process.

For information about creating your own deblurring functions, see “Creating
Your Own Deblurring Functions” on page 13-23. To avoid "ringing" in a
deblurred image, you can use the edgetaper function to preprocess your
image before passing it to the deblurring functions. See “Avoiding Ringing in
Deblurred Images” on page 13-24 for more information.
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1 3 Image Deblurring

Deblurring with the Wiener Filter

Use the deconvwnr function to deblur an image using the Wiener filter. Wiener
deconvolution can be used effectively when the frequency characteristics of
the image and additive noise are known, to at least some degree. In the
absence of noise, the Wiener filter reduces to the ideal inverse filter.

This example deblurs the blurred image created in “Deblurring Model” on
page 13-2, specifying the same PSF function that was used to create the blur.
This example illustrates the importance of knowing the PSF, the function that
caused the blur. When you know the exact PSF, the results of deblurring

can be quite effective.

1 Read an image into the MATLAB workspace. (To speed the deblurring
operation, the example also crops the image.)

I imread('peppers.png');
I I(10+[1:256],222+[1:256],:);
figure;imshow(I);title('Original Image');

2 Create a PSF.
LEN = 31;

THETA = 11;
PSF = fspecial('motion',LEN,THETA);

3 Create a simulated blur in the image.

Blurred = imfilter(I,PSF, 'circular','conv');
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Deblurring with the Wiener Filter

figure; imshow(Blurred);title('Blurred Image');

4 Deblur the image.

wnri = deconvwnr(Blurred,PSF);
figure;imshow(wnrt);
title('Restored, True PSF');

Refining the Result

You can affect the deconvolution results by providing values for the optional
arguments supported by the deconvwnr function. Using these arguments you
can specify the noise-to-signal power value and/or provide autocorrelation
functions to help refine the result of deblurring. To see the impact of these
optional arguments, view the Image Processing Toolbox deblurring demos.
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Deblurring with a Regularized Filter

Use the deconvreg function to deblur an image using a regularized filter. A
regularized filter can be used effectively when limited information is known
about the additive noise.

To illustrate, this example simulates a blurred image by convolving a
Gaussian filter PSF with an image (using imfilter). Additive noise in the
image is simulated by adding Gaussian noise of variance V to the blurred
image (using imnoise):

1 Read an image into the MATLAB workspace. The example uses cropping to
reduce the size of the image to be deblurred. This is not a required step in
deblurring operations.

I = imread('tissue.png');
I = I(125+[1:256],1:256,:);
figure; imshow(I); title('Original Image');

Image Courtesy Alan W. Partin
2 Create the PSF.
PSF = fspecial('gaussian',11,5);
3 Create a simulated blur in the image and add noise.

Blurred = imfilter(I,PSF, 'conv');

V = .02;
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Deblurring with a Regularized Filter

BlurredNoisy = imnoise(Blurred, 'gaussian',0,V);
figure;imshow(BlurredNoisy);title('Blurred and Noisy Image');

4 Use deconvreg to deblur the image, specifying the PSF used to create the
blur and the noise power, NP.

NP = V*prod(size(I));
[reg1l LAGRA] = deconvreg(BlurredNoisy,PSF,NP);
figure,imshow(regi),title('Restored Image');
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Refining the Result

You can affect the deconvolution results by providing values for the optional
arguments supported by the deconvreg function. Using these arguments you
can specify the noise power value, the range over which deconvreg should
iterate as it converges on the optimal solution, and the regularization operator
to constrain the deconvolution. To see the impact of these optional arguments,
view the Image Processing Toolbox deblurring demos.
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13 Image Deblurring

Deblurring with the Lucy-Richardson Algorithm

13-10

Use the deconvlucy function to deblur an image using the accelerated,
damped, Lucy-Richardson algorithm. The algorithm maximizes the likelihood
that the resulting image, when convolved with the PSF, is an instance of

the blurred image, assuming Poisson noise statistics. This function can be
effective when you know the PSF but know little about the additive noise

in the image.

The deconvlucy function implements several adaptations to the original
Lucy-Richardson maximum likelihood algorithm that address complex image
restoration tasks. Using these adaptations, you can

® Reduce the effect of noise amplification on image restoration
¢ Account for nonuniform image quality (e.g., bad pixels, flat-field variation)
¢ Handle camera read-out and background noise

¢ Improve the restored image resolution by subsampling

The following sections provide more information about each of these
adaptations.

Reducing the Effect of Noise Amplification

Noise amplification is a common problem of maximum likelihood methods
that attempt to fit data as closely as possible. After many iterations, the
restored image can have a speckled appearance, especially for a smooth
object observed at low signal-to-noise ratios. These speckles do not represent
any real structure in the image, but are artifacts of fitting the noise in the
image too closely.

To control noise amplification, the deconvlucy function uses a damping
parameter, DAMPAR. This parameter specifies the threshold level for the
deviation of the resulting image from the original image, below which
damping occurs. For pixels that deviate in the vicinity of their original values,
iterations are suppressed.

Damping is also used to reduce ringing, the appearance of high-frequency
structures in a restored image. Ringing is not necessarily the result of noise
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amplification. See “Avoiding Ringing in Deblurred Images” on page 13-24
for more information.

Accounting for Nonuniform Image Quality

Another complication of real-life image restoration is that the data might
include bad pixels, or that the quality of the receiving pixels might vary
with time and position. By specifying the WEIGHT array parameter with
the deconvlucy function, you can specify that certain pixels in the image
be ignored. To ignore a pixel, assign a weight of zero to the element in the
WEIGHT array that corresponds to the pixel in the image.

The algorithm converges on predicted values for the bad pixels based on

the information from neighborhood pixels. The variation in the detector
response from pixel to pixel (the so-called flat-field correction) can also be
accommodated by the WEIGHT array. Instead of assigning a weight of 1.0 to the
good pixels, you can specify fractional values and weight the pixels according
to the amount of the flat-field correction.

Handling Camera Read-Out Noise
Noise in charge coupled device (CCD) detectors has two primary components:

® Photon counting noise with a Poisson distribution

® Read-out noise with a Gaussian distribution

The Lucy-Richardson iterations intrinsically account for the first type of noise.
You must account for the second type of noise; otherwise, it can cause pixels
with low levels of incident photons to have negative values.

The deconvlucy function uses the READOUT input parameter to handle
camera read-out noise. The value of this parameter is typically the sum of
the read-out noise variance and the background noise (e.g., number of counts
from the background radiation). The value of the READOUT parameter specifies
an offset that ensures that all values are positive.
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Handling Undersampled Images

The restoration of undersampled data can be improved significantly if it is
done on a finer grid. The deconvlucy function uses the SUBSMPL parameter to
specify the subsampling rate, if the PSF is known to have a higher resolution.

If the undersampled data is the result of camera pixel binning during image
acquisition, the PSF observed at each pixel rate can serve as a finer grid PSF.
Otherwise, the PSF can be obtained via observations taken at subpixel offsets
or via optical modeling techniques. This method is especially effective for
images of stars (high signal-to-noise ratio), because the stars are effectively
forced to be in the center of a pixel. If a star is centered between pixels, it is
restored as a combination of the neighboring pixels. A finer grid redirects the
consequent spreading of the star flux back to the center of the star’s image.

Example: Using the deconvlucy Function to Deblur
an Image

To illustrate a simple use of deconvlucy, this example simulates a blurred,
noisy image by convolving a Gaussian filter PSF with an image (using
imfilter) and then adding Gaussian noise of variance V to the blurred image
(using imnoise):

1 Read an image into the MATLAB workspace. (The example uses cropping
to reduce the size of the image to be deblurred. This is not a required step
in deblurring operations.)

I = imread('board.tif');
I = I(50+[1:256],2+[1:256],:);
figure;imshow(I);title('Original Image');
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2 Create the PSF.

PSF = fspecial('gaussian',5,5);

3 Create a simulated blur in the image and add noise.
Blurred = imfilter(I,PSF, 'symmetric', 'conv');
V = .002;

BlurredNoisy = imnoise(Blurred, 'gaussian',0,V);
figure;imshow(BlurredNoisy);title('Blurred and Noisy Image');
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1 3 Image Deblurring

4 Use deconvlucy to restore the blurred and noisy image, specifying the
PSF used to create the blur, and limiting the number of iterations to 5
(the default is 10).

Note The deconvlucy function can return values in the output image that
are beyond the range of the input image.

luc1 = deconvlucy(BlurredNoisy,PSF,5);
figure; imshow(luct);
title('Restored Image');
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Refining the Result

The deconvlucy function, by default, performs multiple iterations of the
deblurring p